

HFGeo Phase 0 and Phase 1B Test and Evaluation Smart Collection Office

LEADING INTELLIGENCE INTEGRATION

Frank C. Robey, D.Sc.
HFGeo Phase 1B Proposers' Day Briefing,
July 13, 2012

LEADING INTELLIGENCE INTEGRATION

Agenda

8:00 – 8:30 am	Check-in	
8:30 – 8:40 am	IARPA Overview and Remarks	Dr. Peter Highnam IARPA Director (acting)
8:40 – 9:10 am	Contracting Officer Remarks	Ms. Sarah Wiley IARPA Contracting Officer
9:10 – 10:30 am	HFGeo Phase 1B Overview	Dr. Frank Robey SC Deputy / Program Manager
10:30 – 10:45 am	Break	
10:45 – 11:30 pm	HFGeo Phase 1B T&E	Dr. Frank Robey SC Deputy / Program Manager
10:45 – 11:30 pm 11:30 – 12:00 pm	HFGeo Phase 1B T&E Q&A Session	SC Deputy / Program
		SC Deputy / Program

LEADING INTELLIGENCE INTEGRATION

Phase 0 Testing

Ionospheric physics investigation

- Determine the temporal variation of the ionosphere
- Determine the spatial variation & scale
- Determine variation with frequency for geolocation

Sensor data for Phase 1 (vector)

- AM, single sideband, digital (PSK-31), and radar waveforms
- Interference: local and long distance
- Sky wave and surface wave radar intelligence data

Vector antenna proof of concept

Ionospheric Electron Density Variation

Propagation Variation

LEADING INTELLIGENCE INTEGRATION

Notional Test Layout for Phase 1B

LEADING INTELLIGENCE INTECRATION

LEADING INTELLIGENCE INTEGRATION

HFGeo Phase 1A Link Distribution

- 28 Receiver Transmitter links
- 6 separate campaign intervals (~ 5 x 12 hrs, 1 x 24 hrs)
- Successfully conducted between 01 09 Mar 2012
- Participation by 13 additional FCC sites not illustrated above

LEADING INTELLIGENCE INTEGRATION

Phase 1A HFGeo Local Link Distribution

- Receiver
- Transmitter
- Midpoint
- Digisonde (UMass-Lowell)

APL links (example)

Dense midpoint distribution contains spatial variation from < 1 km to ~100 km

Antenna Equipment

Naval Research Laboratory
6-Axis Vector Sensor
Used for Receive Only
Total of 3 Antennas Fielded

MITRE Corporation
3-Axis Wire Antenna
Used for Transmit and Receive
Total of 18 3-Pol Antennas Fielded

LEADING INTELLIGENCE INTEGRATION

Layouts for Sites with Arrays

15-Channel Transmit System

ROTHR: New Kent, Virginia (RVA)
1 x 3-Polarization Sounder
4 x 3-Polarization Radar/Comms Emitters

18-Channel Receive System

FCC HFDF Enforcement Site: Laurel, MD 4 x 3-Polarization Wire Antennas 3 x Vector Sensors

Equipment from across the wider HF/OTHR community was reconfigured to support this HFGeo testing campaign

Particular thanks to OSD/AFRL NGOTHR Technology Risk Reduction Initiative for use of transmit equipment

LEADING INTELLIGENCE INTEGRATION

Vector Sensor Development

Vector Sensor Characteristics

- Ground symmetric
- 3 orthogonal loop construction
- 3 orthogonal dipole construction
- Operates over 3 to 10 MHz
- Twin loop mechanically supports dipoles
- Active matching networks

EM Modeling of Sensor

- Initial model of simple loops and dipoles done with NEC and based on method of moments
- Planned: Antenna range measurements

Fielded Vector Sensor

LEADING INTELLIGENCE INTEGRATION

Transmit and Receive Equipment

15-Channel Transmit System

3-Channel Transmit System
(3 Total)

18-Channel Receive System

4-Channel Suitcase Receive System
(6 Total)

LEADING INTELLIGENCE INTEGRATION

4-Channel Transmit RackTotal of Three Systems Configured

- Combination of Components
 - Half-Height rack chassis
 - 4 Active DWG, PA, MRx sets
 - Control computer, TRDU, Power
 - Spares: 2 DWG, 1 PA
 - Jackson Labs GPS unit (in rear)
- Operation
 - Independent sounder scheduling for each channel/site
 - Individual radar scheduling for each channel/site

LEADING INTELLIGENCE INTEGRATION

Suitcase Receiver Systems

Total of Six Systems Configured

- 6 suitcase systems
 - Analog front-end (external)
 - 4 Monitor receivers
 - Internally Generated GPS Timing
 - 1 Laptop Control Computer

LEADING INTELLIGENCE INTEGRATION

18-Channel Receiver System

- Combination of Components
 - Half-Height rack chassis
 - 18 BAE Systems (AUS) Direct Digital Receiver (DDRx MkIID)
 - Control computer
 - GPS timing
 - Precision frequency reference
- Operation
 - Direct sampling of HF spectrum
 - Three flexible channelizers per receiver
 - Simultaneous reception of three frequency bands or sounders

Outline

- Introduction
- Test Siting and Equipment

- Example Results
 - Summary

_ EADING INTELLIGENCE INTEGRATION

Single Element Spectrogram

Communication Signal

- Spectrograms

 (overlapped Short-Time
 Fourier Transforms)
 using built-in MATLAB
 function operating on raw data
- Example to right is of single sideband and AM signals

04 Mar 2012 23:26:00 UTC (17:26:00 Local)

LEADING INTELLIGENCE INTEGRATION

Single Element Radar Processing

billigie Element Radai i 100033111g

- Range-Doppler displays produced from radar transmission
- Example to right shows one-way radar signal measurement (channel scattering function)

Radar Range-Doppler Output 03 Mar 2012 19:30:00 UTC (14:30:00 Local)

LEADING INTELLIGENCE INTEGRATION

Single Element Ionogram

Ionogram Output 07 Mar 2012 16:00:00 UT (11:00:00 Local)

- Ionogram produced from linear-sweep transmitted signal
- Example to right shows near-vertical incidence with clear O/X traces and some 2-hop O returns

LEADING INTELLIGENCE INTEGRATION

Vector Sensor Measurements

- Three element vector sensor deployed to FCC receive site
- Calibration efforts are significant
- Prior to deployment, NEC was used to model vector sensor
- Initial calibration is using local signal injection
- Further calibration will use SPAWAR outdoor antenna range

LEADING INTELLIGENCE INTEGRATION

Quick Look Processing

LEADING INTELLIGENCE INTEGRATION

Channel Scattering Function

Range Doppler Plot H1 EMVS2

Radar Waveform - 20kHz Swept BW, 10Hz WFR, 10s Dwell, 5.48MHz fc, E3 → N

2012-03-03 023320 UTC

LEADING INTELLIGENCE INTEGRATION

2D EMVS Array Spatial, Polarization Processing

Radar Waveform - 20kHz Swept BW, 10Hz WFR, 10s Dwell, 5.48MHz fc, E3 → N

2012-03-03 023320 UTC

LEADING INTELLIGENCE INTEGRATION

Ionogram RF Interference Removal Exploitation of Polarization Data

- RF Interference (RFI) removed using polarization-based processing
 - Left plot is measurement on single H-pol dipole receive antenna
 - Right plot is combination of 3-polarization responses to reject interference sources in sounder data

H-Pol 1

Cleaned Ionogram

LEADING INTELLIGENCE INTEGRATION

Ionospheric O-X Separation

Receive Antenna Quick-look Result

Color Indicates Ionospheric Mode: O (purple) or X (green)

O Mode

Cleaned lonogram

X Mode

Color Indicates Amplitude Level (dB)
Initial result indicates potential separation of F-layer O and X modes
Cleaned Ionogram
O Mode
X Mode

Data processing adapted from T. Harris, DSTO

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

LEADING INTELLIGENCE INTEGRATION

Data Supporting Ionospheric Analysis

- Additional ionospheric data were collected by other sensors during test
 - Wallops Island Digisonde operated at 5 min intervals with enhanced "Skymap" mode at ~ 1 min intervals to determine tilt
 - Dual-frequency GPS data for TEC at RVA site (10 sec resolution)
 - Space weather measurements from NOAA, etc.

LEADING INTELLIGENCE INTEGRATION

- **Exa**mples
 - These results illustrate the automated extraction challenge
 - Short baseline control point parameters do not always precisely agree
 - Agreement must be improved

hmF2 20120305 Quiet Interval

EADING INTELLIGENCE INTEGRATION

Space Weather During HFGeo Test

02 Mar 2012 = DOY 62

F10.7

A fortuitous mix of active and quiet conditions

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

LEADING INTELLIGENCE INTEGRATION

Results: Ionospheric Survey

INTELLIGENCE ADVANCED RESEARCH PROJECTS ACTIVITY (IARPA)

THE DIRECTOR OF NATIONAL INTELLIGENCE

Sample Ionograms: Half-Day Movies

Quiet Conditions on 6 March 2012

Short, Near-Vertical Baseline

APL Receive Site

Longer, Oblique Baseline

BED Receive Site

LEADING INTELLIGENCE INTEGRATION

Sample Ionograms: Half-Day Movies

Active Conditions on 8 March 2012

Short, Near-Vertical Baseline

FCC Receive Site

Longer, Oblique Baseline

BED Receive Site

LEADING INTELLIGENCE INTEGRATION

Summary

- The HFGeo collection was a comprehensive, geographically distributed test fortuitously conducted under active and quiet geophysical conditions
- Initial polarimetric signal processing algorithms have been demonstrated to improve oblique ionogram interference rejection and trace extraction
- Some of this data could be provided if useful for Phase 1B

