
Unmanned Aerial Systems and Airborne Technologies Programs in DHS S&T

Dr. John F. Appleby

Homeland Security Advanced Research Projects Agency Science and Technology Directorate U.S. Department of Homeland Security

S&T Organization

Borders and Maritime Security Division

Mission: Develop technical knowledge and capabilities that enhance U.S. border security without impeding the flow of commerce or travel

 AOR: All air, land and maritime borders, including ports-of-entry and inland waterways

Challenges

- Operational environments are difficult and varied
- Stakeholders have diverse needs and motivations
- Deployed technologies must be affordable, robust, reliable, and low maintenance

Key Partners/Customers

- Customs and Border Protection (CBP)
- United States Coast Guard (USCG)
- Immigration and Customs Enforcement (ICE)
- Transportation Security Administration (TSA)

Scalable Common Operating Picture Experiment (SCOPE)

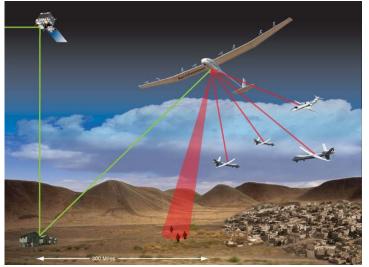
UAS in National Airspace System

Airborne Sensors

Scalable Common Operating Picture Experiment (SCOPE)

UAS in National Airspace System

Airborne Sensors



Scalable Common Operating Picture Experiment (SCOPE)

VISION: Dominant border and maritime domain awareness via continuous overthe-horizon surveillance

- 7-day orbits at 50,000 ft with 2-hr revisit rate
- Reaper cueing, beyond-line-of-sight relay for video & comms
- Full motion video
- Comm. relay
- Multi-function contingency platform
 - Special security events; disaster response; research; other

Scalable Common Operating Picture Experiment (SCOPE)

> UAS in National Airspace System

Airborne Sensors

Modeling & Simulation

Problem

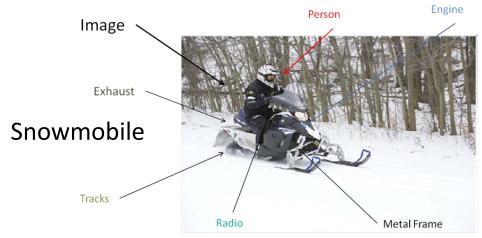
- DHS needs greater Unmanned Aircraft
 Systems (UAS) access to the National Airspace
 System (NAS)
 - FAA today provides NAS access for DHS's Reapers covering large CONUS border domains, with restrictions, based on case-by-case requests
 - The long-term goal is file-and-fly access

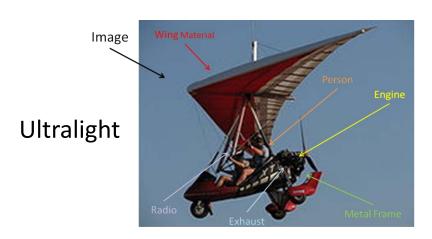
Challenges

- UAS today cannot detect and avoid other aircraft autonomously
- For greater access to the NAS, FAA requires a UAS midair collision probability < 10⁻⁹ incidents/ flight-hour maintained over a year
- This incident probability cannot be demonstrated by actual flying
- FAA safety case requires use of modeling and simulation as well as UAS Collision Avoidance Systems

Scalable Common Operating Picture Experiment (SCOPE)

UAS in National Airspace System


> Airborne Sensors



Sample Scenarios and Observables

Scenarios:

- Ultralight aircraft dropping payload
- Helicopter crossing US/Canada border
- Boats transporting between borders
- Underground tunnel
- Boat rendezvous
- Pedestrian border crossing
- Vehicles driven on frozen lakes/rivers
- Smuggling via commercial trade
- Crossing via Native American reservations

Example of Problem Decomposition: Land Vehicle Summary

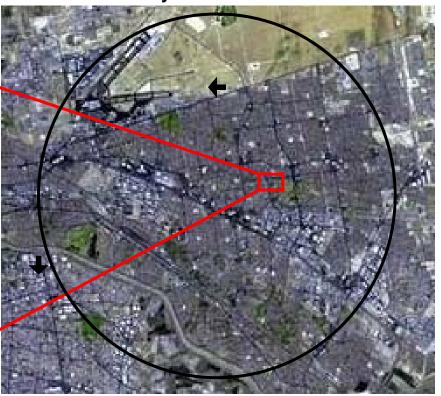
Sensor Technology Acoustic Object Air Vehicle Visible Image Snowmobile Land Vehicle IR Image Water Vehicle → ATV **GMTI** Person(s) Automobile Polarimetry Item RF Signature → Small Truck / Van SIGINT Large Truck / Bus M/HSI Signature

SAR/CCD

Magnetometer

Capability Gap: High-Res but Narrow FOV Sensors

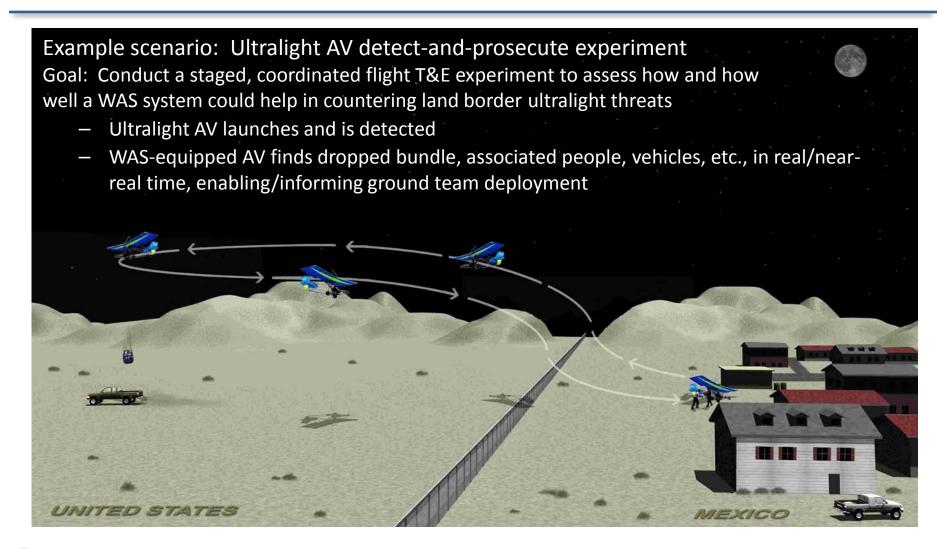
- Only a small area can be imaged at one time
- Targets of Interest (TOIs) or potential TOIs are identified by some other means



WAS Capability: Large FOV Imaging System

Example: City-sized area is imaged & recorded at high-res and high frame rate

FOR is many miles across; coverage is many hours in duration



Events of interest happen where and when you're not looking...

...DHS needs real-time ops support and forensic capabilities

Persistent Airborne WAS – 2011/12

Examples – Other WAS Program Scenarios

1. Surveillance of near-border urban areas

Tracking, back-tracking vehicles and people

2. Monitor very large border areas

Unauthorized intrusion

3. Detect near-border tunnel entrances

 Automatically measure flux of people entering and leaving near-border buildings

4. Disaster relief – notional example:

 WAS imagery finds TOIs over large areas and cues high-res. spotter to locate victims & vector rescue teams

Mariposa POE, Nogales, AZ

Scalable Common Operating Picture Experiment (SCOPE)

UAS in National Airspace System

Airborne Sensors

First & Emergency Responder UAS T&E

Goals

- Evaluation of small unmanned aircraft system (sUAS) value to first and emergency responders in real operational environments
- Use/validate FAA's draft criteria for flying sUASs
- Build experience and knowledge base for sUAS use in urban areas including disaster response

Initial step (2010-11)

- Scenario types: Law enforcement; fire; hazmat; S&R
- 3 sensor types: EO/IR, chemical, radiological
- Representative sUAS types
- Observers (e.g., FEMA; USSS; CBP; other)

Mission Needs comments on GHO

