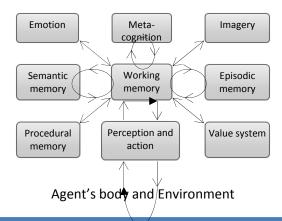
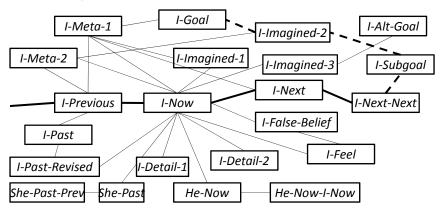
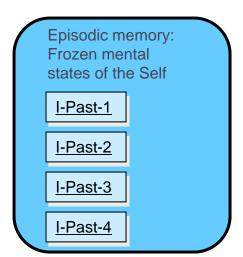

George Mason University Krasnow Institute for Advanced Study

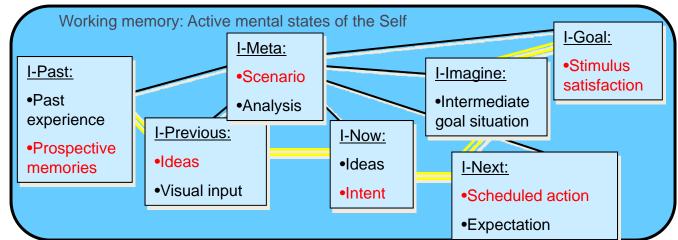
- Lead investigators and current team members:
 - Kenneth A. De Jong, Giorgio A. Ascoli, and Alexei V. Samsonovich (presenter)
- Research areas of interest, which are also areas of qualification and unique capabilities:
 - 1. Biologically-inspired cognitive architectures (Samsonovich, De Jong & Kitsantas, *International Journal of Machine Consciousness*, 1, 111-130, 2009)
 - 2. Connectionist modeling of the hippocampal formation (Samsonovich & McNaughton, JN 1997; Samsonovich & Ascoli, Learn&Mem 12, 193-208, 2005)
 - 3. Semantic cognitive mapping of natural language (Samsonovich & Ascoli, Frontiers in AI & Applications, 157, 111-124, 2007; PLoS One, under review)
- Specific capabilities of partners that our group is seeking are:
 - 1. "Peripheral" cognitive capabilities: signal-to-symbol, NLP, VR simulators
 - 2. A strong computational model of neocortex
 - 3. Automated extraction of synonym and antonym relations from corpora


An Overview of GMU BICA


GMU BICA

Generic cognitive architecture

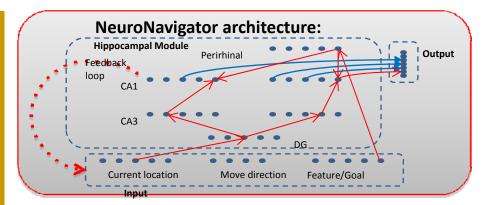



Taxonomy of mental state kinds

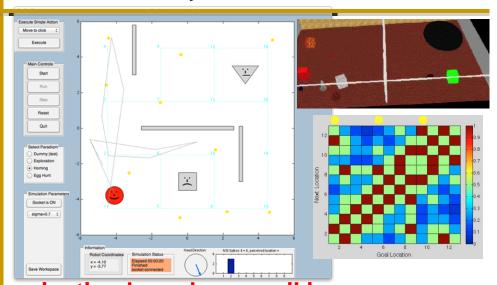
A mental state in GMU-BICA includes contents of awareness represented by of the Self who has the experience (labeled *I-Now*, *I-Next*, etc.)

- schemas and specification of the instance
- Each box is a mental state. Each bulleted string is an instance of a schema. The double line shows the current working scenario. Red color marks the focus of attention within each mental state.
- The framework allows the system to process a mental state from another mental state perspective, thereby providing a basis for various forms of metacognition and self-regulation.
- Working memory operates in series of voluntary action cycles: (perception, ideas, intent, action).
- Episodic memory consists of frozen mental states that once were active in working memory.

Goal: Human-level cognition and learning in a broad range of paradigms


NeuroNavigator: A microcircuit designed under SyNAPSE program

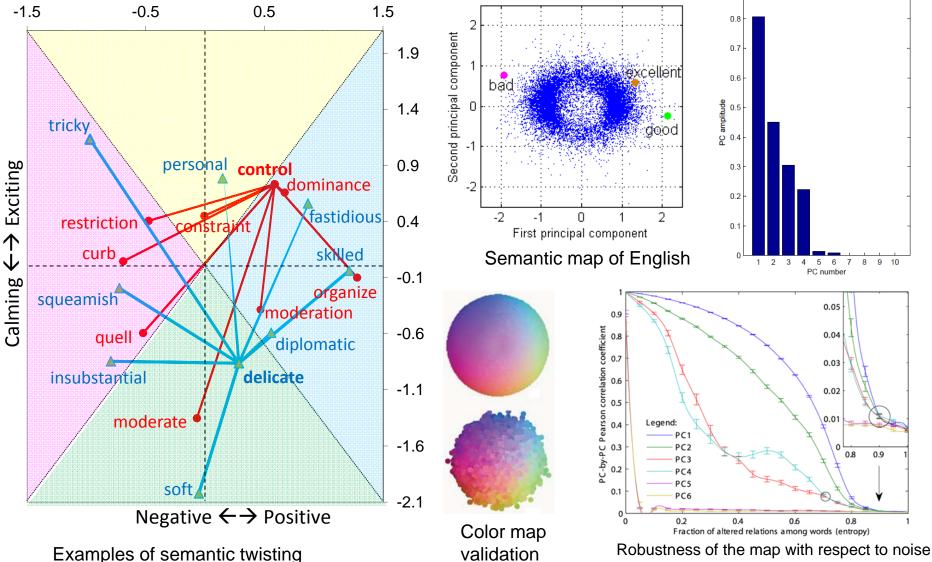
The model is capable of:


- Efficient exploration of space
- Spatial learning
- Navigation
- Non-spatial learning
- > Cognitive problem solving
- Supports episodic memory retrieval
- Supports Theory of Mind (with multiple copies of the model)
- Reconstructs self-location from noisy input

Key behaviors that have been demonstrated with the model include:

- Exploration and navigation of various virtual spaces: a 2-D indoor environment, binary and ternary trees, large hierarchical environments, CASTLE Laboratory
- Learning and solving logical problems: Hanoi Towers, Traveling Salesman
- > Easter Egg Hunt: given a goal (egg), the robot finds a short path to it using remembered episodes of past experience.

- > 15K I&F neurons, 150K STDP synapes (~50% fixed)
- Activity very low. Time for decision making 100ms
- ➤ Tested scalability from 10² to 10⁶ neurons


Our target is spatial learning and havigation based on a spiking neuronal network of 1,000,000 neurons with 10,000 synapses each

Semantic cognitive mapping of language

Goal: Automated semantic mapping of arbitrary data (text, images, internal representations of knowledge) based on given or detected relations of

synonymy and antonymy

Contact Information

- Name: Alexei Samsonovich
- Title: Research Assistant Professor
- Organization:
 - Krasnow Institute for Advanced Study, George Mason University
- Email address: <u>asamsono@gmu.edu</u>
- Phone number(s):
 - 703-993-4385(o),-4325(fax), 703-629-6438(m)
- url: http://mason.gmu.edu/~asamsono/