

Statistical Methods for Kinship Analysis

Kristen E. Lewis, Ph.D.

National Institute of Standards and Technology Biochemical Science Division Applied Genetics Group – DNA Biometrics Project

> Towson University April 26, 2010

Overview

- Measures of relatedness
- Inbreeding in a population
- Probability of observed genotypes from related individuals
- Likelihood ratio calculations for kinship testing
- Bayesian statistics
- Background relatedness

Measures of Relatedness

• Identity by descent

• Coancestry coefficient

• Inbreeding coefficient

Basic Concepts

- Two genes which are copies of a common ancestral gene are said to be identical by descent (IBD)
 - IBD is unobservable
- Two genes that are not shared by descent but have the same allelic state are said to be **identical by state (IBS)**
 - Allelic states are observable
- Observation of genotype \rightarrow inference of relatedness

Example: The observed genotypes of unidentified remains and the brother of a missing man can be used to answer the question of whether the body is that of the missing man

IBD vs. IBS

IBS: Alleles of the same type

- Same base for a SNP
- Same number of STR repeats

IBS does not generally equate to IBD

A₂ is IBS IBD status is unknown

Coancestry Coefficient (θ)

Probability that an allele taken at random from one individual is IBD to an allele taken at random from another individual

 $\theta_{XY} = \Pr(a \equiv c)$

Inbreeding Coefficient (F)

Probability that an individual carries two IBD alleles at a locus

Inbreeding coefficient of an individual is the coancestry of its parents

$$F_J = \Theta_{XY}$$

Calculating Relatedness Coefficients Path Counting Method

Probabilities of identity are defined relative to an ancestor common to both maternal and paternal lineages of an individual

Inbreeding Coefficient: *n* = number of individuals in the pathway that link the **parents** to the common ancestor, including the parents

Coancestry Coefficient: *n* = number of individuals in the pathway that link the **individuals** to the common ancestor, including the individuals

$$F_{J} = \Theta_{XY} = (1/2)^{n} (1 + F_{A})$$

$$F_{A} = \text{inbreeding coefficient}$$
of common ancestor
$$F_{J} = \Theta_{XY} = (1/2)^{n} (1 + F_{A})$$

$$F_{A} = \text{inbreeding coefficient}$$

$$F_{A} = \text{inbreeding coefficient}$$

$$F_{A} = \text{inbreeding coefficient}$$

Path Counting How related are Parent-Offspring?

X

Common ancestor of X and J: X

Number of individuals in path: 2

Coancestry of X and J: $\theta_{\chi J} = (1/2)^2 = 1/4$

Path Counting How related are Full Siblings?

Common ancestor of X and Y: G and H

Path linking X,Y to common ancestor: X-G-Y and X-H-Y

Number of individuals in path: 3

Coancestry of X and Y: $\theta_{XY} = (1/2)^3 + (1/2)^3 = 1/4$

Coancestry for Common Relationships

Relationship	Coancestry
Unrelated	0
Identical twins	1/2
Parent-child	1/4
Full siblings	1/4
Half siblings	1/8
Uncle-nephew	1/8
Grandparent-grandchild	1/8
Double first cousins	1/8
First cousins	1/16

Effect of Inbreeding in a Population Individual Genotype Frequencies

Assume all individuals in a population have an inbreeding coefficient, F

- Probability an individual has two IBD alleles is F
- Probability an individual does not have two IBD alleles is 1 F
- Probability that any allele is type A is p_A

Probability that an individual is homozygous:

$$P_{AA} = F \times p_A + (1 - F) \times p_A^2$$

2 alleles IBD no alleles IBD

Rearranged similar to Hardy-Weinberg equation:

$$P_{AA} = p_A^2 + F p_A (1 - p_A)$$

HWE inbreeding

Individual Genotype Frequencies with Inbreeding

Homozygous:

$$P_{AA} = p_A^2 + F p_A (1 - p_A)$$

Heterozygous individuals must have non-IBD alleles:

$$P_{Aa} = 2(1 - F) p_A p_a$$

no alleles IBD

Rearranged similar to Hardy-Weinberg equation:

$$P_{Aa} = 2p_A p_a - 2F p_A p_a$$

HWE inbreeding

Example: Effect of Inbreeding in Population

If every person in the population had parents who were first cousins, inbreeding coefficient F = 1/16 = 0.0625

$$P_{AA} = p_A^2 + 0.0625 p_A (1 - p_A)$$

$$P_{Aa} = 2p_A p_a - 0.125p_A p_a$$

If
$$p_A = p_a = 0.2$$
,
 $P_{AA} = 0.040 + 0.01 = 0.050$
 $P_{Aa} = 0.080 - 0.005 = 0.075$

15 IBD Possibilities for Any Two Individuals

For individuals X (ab) and Y (cd):

- A probability value is associated with each of these IBD possibilities (e.g., δ_{ac} or $\delta_{ac,bd}$)
- When neither individual is inbred, the 15 IBD possibilities can be reduced to seven possible IBD relationship. See: Weir B., Anderson A., Hepler A., Nat. Rev. Genet. (2006) 7:771-80
- The seven can be reduced to a three-parameter set (next slide)

Seven IBD Possibilities for Two Non-Inbred Individuals

For non-inbred individuals, there are seven IBD possibilities that can be described by **three k-coefficients** corresponding to probabilities that individuals have zero, one, or two IBD alleles

Recall that the coancestry θ_{XY} is the probability that a random allele from X is IBD to a random allele from Y

 $\theta_{XY} = \Pr(a \equiv c)$

Weir B., Anderson A., Hepler A., Nat. Rev. Genet. (2006) 7:771-80

So far...

We have defined measures of relatedness:

- Coancestry coefficient, θ
- Inbreeding coefficient, F
- IBD states (e.g., $a \equiv b$) and related k-coefficients

We know there are IBD probabilities (δ) associated with the three IBD *k*-coefficients

But how are these probabilities calculated for specific relationships?

How are the IBD coefficients determined?

Uncle-Nephew example

Determine allele transmission frequencies:

50/50 chance of a parent transmitting one of its alleles to an offspring

$$k_{0} = \frac{1}{2}$$

$$Pr(a \equiv c) = \frac{1}{2} (\frac{1}{2}) = \frac{1}{4}$$

$$Pr(b \equiv c) = \frac{1}{2} (\frac{1}{2}) = \frac{1}{4}$$

$$k_{1} = \frac{1}{2}$$

$$k_{2} = 0$$

Can also draw a matrix of all possible genotypes of offspring (next slide)

How are the IBD coefficients determined?

Uncle-Nephew example

Determine genotype matrix:

Possible genotypes of {[child of (ac x be)] x df}

c x be		ad	af	bd	bf	cd	cf	ed	ef	
or (a	ab	1	1	1	1	0	0	0	0	•
Spes	cb	0	0	1	1	1	1	0	0	
Sellor	ae	1	1	0	0	0	0	1	1	
	ce	0	0	0	0	1	1	1	1	
POS	$k_0 =$	16/3	2 = 1	/2	k 1 = 1	16/3	2 = 1⁄	/ 2	$k_2 = 0$	(

- 1. Determine possible offspring combinations from the mating of U's parents (ac x be)
- Determine possible offspring combinations from the mating of N's parents (df x each of the genotypes from Step 1)
- 3. Count number of shared (IBD) alleles and divide by the total possible

IBD Allele Sharing Values for Common Relationships

Relationship	k _o	k 1	k ₂	Coancestry $\theta = \frac{1}{2}k_2 + \frac{1}{4}k_1$
Unrelated	1	0	0	0
Identical twins	0	0	1	1/2
Parent-child	0	1	0	1/4
Full siblings	1/4	1/2	1/4	1/4
Half siblings	1/2	1/2	0	1/8
Uncle-nephew	1/2	1/2	0	1/8
Grandparent-grandchild	1/2	1/2	0	1/8
Double first cousins	9/16	3/8	1/16	1/8
First cousins	3/4	1/4	0	1/16

k-coefficients: Probability of sharing zero, one, or two IBD alleles

Let's consider the genotypes of two individuals...

What are the genotype probabilities when jointly considering genotypes from two individuals?

It is **not** p^2 or 2pq for two unrelated individuals! Why?

In this case, determine probability of observing allele *i* under different IBD states when you jointly consider the genotypes from two homozygous individuals.

IBD Relationship	$X = A_i A_i$ $Y = A_i A_i$	Probability of observing allele <i>i</i>
δ ₀	p _i ⁴ <	for two unrelated , non-inbred
δ _{ac}	p_i^3	individuals with 0 IBD alleles
δ_{ad}	p _i ³	for two non-inbred
δ_{bc}	p_{i}^{3}	individuals with 1 pair of IBD
δ_{bd}	p_i^3	alleles
$\delta_{ac.bd}$	p_i^2	for two non-inbred
δ _{ad.bc}	p_i^2	individuals with 2 pairs of IBD alleles

Genotype probabilities when jointly considering genotypes from two individuals

Probability of observing alleles *i*,*j*,*k*,*l* under different IBD states for all possible two-person genotype combinations.

Joint Genotypes	k _o	k 1	k ₂
ii,ii	p_i^4	p_i^3	p_i^2
ii,jj	$p_{i}^{2}p_{j}^{2}$		
ii,ij	$2p_i^3p_j$	$p_i^2 p_j$	
ii,jk	$2p_i^2p_jp_k$		
ij,ij	$4p_{i}^{2}p_{j}^{2}$	$p_i p_j (p_i + p_j)$	$2p_ip_j$
ij,ik	$4p_i^2 p_j p_k$	p _i p _j p _k	
lj,kl	4p _i p _j p _k p _l		

Now...

We have defined measures of relatedness:

- coancestry coefficient, θ
- inbreeding coefficient, F
- IBD states (e.g., $a \equiv b$) and related k-coefficients

We can calculate IBD probabilities (δ) associated with the three *k*-coefficients for various relationships

We can define probabilities of observing different allele combinations for two individuals

How do we bring all of these parameters together to determine the probability of observing two genotypes if the individuals are related?

Joint Genotypic Probabilities (non-inbred)

Determine probability of individuals' genotypes when their degree of relationship is known or assumed

Express genotype probabilities for pairs of individuals as a function of the allele probabilities and IBD relationship

Genotypes	Genotypic state	Non-inbred Joint Genotypic Probability
A _i A _i , A _i A _i	Hom/hom	$k_2 P_i^2 + k_1 P_i^3 + k_0 P_i^4$
$A_i A_i, A_j A_j$	Hom/hom	$k_0 P_i^2 P_j^2$
A _i A _i , A _i A _j	Hom/het	$k_1 P_i^2 P_j + 2k_0 P_i^3 P_j$
A _i A _i , A _j A _m	Hom/het	$2k_0P_i^2P_jP_m$
$A_i A_j, A_i A_j$	Het/het	$2k_2P_iP_j + k_1P_iP_j(P_i + P_j) + 4k_0P_i^2P_j^2$
$A_i A_j, A_i A_m$	Het/het	$k_1 P_i P_j P_m + 4k_0 P_i^2 P_j P_m$
A _i A _j ,A _m Al	Het/het	$4k_0P_iP_jP_mP_l$

Example of Joint Genotypic Probabilities and Accounting for Relatedness

Probability that two individuals are A_iA_i if **full siblings**:

 $Pr(A_iA_i,A_iA_i) = k_2p_i^2 + k_1p_i^3 + k_0p_i^4$

$$Pr(A_iA_i,A_iA_i| \text{ full sibs}) = (1/4)p_i^2 + (1/2)p_i^3 + (1/4)p_i^4$$

 $Pr(A_iA_i, A_iA_i)$ full sibs) = $p_i^2(1 + p_i)^2/4$

Compare this to the probability for two **unrelated** A_iA_i individuals: p_i^4

If $p_i = 0.2$, $Pr(A_iA_i,A_iA_i)$ full sibs) = 0.0144 $Pr(A_iA_i,A_iA_i)$ unrelated) = 0.0016

Distinguishing between Putative Relationships

- Paternity testing
 - Is the alleged father the true father of the child or unrelated?

• Human remains identification

– Are the remains from a person who has a specified relationship to a family member of a missing person? Or unrelated to family member?

Are these individuals related?

 Compare the probabilities of the observed genotypes under alternative hypotheses about relationship

 Use a likelihood ratio to determine which competing putative relationship makes the observed genotypes more probable

Likelihood Ratio

Probability of the evidence under different relatedness scenarios

$LR = Pr(E H_1)$	
Pr(E H ₂)	
LR = Pr(X,Y S)	Example: H ₄ : X is the sibling of Y
Pr(X,Y U)	H_2 : X is unrelated to Y

Calculate LR for each locus. Multiply LRs across independent loci for combined LR.

Analogous to multiplying Paternity Indices (= LRs) to generate a final Combined Paternity Index for paternity testing.

General Formula of a Likelihood Ratio

Human remains with genotype G_{HR} Putative parents of missing person are Mother (G_M) and Father (G_F) Pedigree information denoted by *I*

 H_1 : Remains are from a biological child of M and F H_2 : Remains are from an unknown person unrelated to M and F

$$LR = \frac{\Pr(G_{HR}, G_F, G_M | H_1, I)}{\Pr(G_{HR}, G_F, G_M | H_2, I)}$$

Using the third law of probability, condition G_{HR} on the other information

$$LR = \frac{\Pr(G_{HR} \mid G_F, G_M, H_1, I) \Pr(G_F, G_M \mid H_1, I)}{\Pr(G_{HR} \mid G_F, G_M, H_2, I) \Pr(G_F, G_M \mid H_2, I)}$$

General Formula of a Likelihood Ratio (cont.)

$$LR = Pr(G_{HR} | G_F, G_M, H_1, I) Pr(G_F, G_M | H_1, I)$$

Pr(G_{HR} | G_F, G_M, H₂, I) Pr(G_F, G_M | H₂, I)

If we assume that the joint probabilities of observing the genotypes of the parents do not depend on the two hypotheses, then

$$Pr(G_F, G_M | H_1, I) = Pr(G_F, G_M | H_2, I)$$

$$LR = Pr(G_{HR} | G_F, G_M, H_1, I)$$
$$Pr(G_{HR} | G_F, G_M, H_2, I)$$

Defining the Numerator of a LR: Joint probabilities for two related non-inbred individuals

Probability of observing all possible two-person genotype combinations under **different IBD states**.

Joint Genotypes	k _o	k 1	k ₂
ii,ii	ii,ii p _i ⁴		p_i^2
ii,jj	$p_{i}^{2}p_{j}^{2}$		
ii,ij	$2p_i^3p_j$	$p_i^2 p_j$	
ii,jk	$2p_i^2p_jp_k$		
ij,ij	$4p_{i}^{2}p_{j}^{2}$	$p_i p_j (p_i + p_j)$	2p _i p _j
ij,ik	$4p_i^2p_jp_k$	$p_i p_j p_k$	
lj,kl	$4p_ip_jp_kp_l$		

For *ii*, *ii* genotypes: $Pr(ii, ii | H_1) = k_0 p_i^4 + k_1 p_i^3 + k_2 p_i^2$

Defining the Denominator of a LR: Joint probabilities for two unrelated individuals

Probability of observing all possible two-person genotype combinations for **unrelated**, **non-inbred individuals**. Unrelated individuals have $k_0 = 1$, $k_1 = k_2 = 0$

Joint Genotypes	k _o
ii,ii	p_i^4
ii,jj	$p_{i}^{2}p_{j}^{2}$
ii,ij	$2p_i^3p_j$
ii,jk	$2p_i^2p_jp_k$
ij,ij	$4p_{i}^{2}p_{j}^{2}$
ij,ik	$4p_i^2 p_j p_k$
lj,kl	4p _i p _j p _k p _l

For *ii*, *ii* genotypes: $Pr(ii, ii | H_2) = k_0 p_i^4$

Likelihood ratios for two non-inbred individuals

Likelihood ratios of observing all possible two-person genotype combinations under hypotheses of relatedness (defined by IBD states) versus unrelated.

Joint Genotypes	k _o	k ₁	k ₂
ii,ii	1	1/p _i	$1/p_{i}^{2}$
ii,jj	1		
ii,ij	1	1/2p _i	
ii,jk	1		
ij,ij	1	$(p_i + p_j)/(4p_ip_j)$	1/(2p _i p _j)
ij,ik	1	1/4p _i	
lj,kl	1		

For *ii*, *ii* genotypes: $LR = \frac{Pr(ii,ii | full sibs)}{Pr(ii,ii | unrelated)} = \frac{1}{4} + \frac{1}{2p_i} + \frac{1}{4p_i^2}$

Complex Kinship Testing

The statistical power for complex kinship testing significantly decreases compared to one-to-one matching Requirements:

- Genotypes of individuals being tested
- Allele frequencies for the loci involved in the testing
- Competing hypotheses!
- Basic statistical equations are known
- Difficult to identify distant relationships
- Discriminatory power comes from multiple family members and the use of informative markers

Likelihood Ratios with 15 Loci

Comparison	LR for 34 & 19	LR for 18 & 19	LR for 34 & 10
Parent-Child	1.28E+06		
Full Siblings		2.76E+07	
Half Siblings			
Cousins			
Uncle-Nephew			6.65E-01
Grandparent- Grandchild			
	Parent/ Child	Full Sibs	Uncle/ Nephew

15 STR loci typed with commercial Identifiler kit

LR calculations were performed with GeneMarker® HIDv1.90

Likelihood Ratios with 15 Loci

Comparison	LR for 34 & 19	LR for 18 & 19	LR for 34 & 10
Parent-Child	1.28E+06	9.08E+05	0.00E+00
Full Siblings	3.22E+04	2.76E+07	6.07E-03
Half Siblings	7.38E+03	4.89E+04	6.65E-01
Cousins	1.95E+02	8.96E+02	1.52E+00
Uncle-Nephew	7.38E+03	4.89E+04	<u>6.65E-01</u>
Grandparent- Grandchild	7.38E+03	4.89E+04	6.65E-01
	Parent/ Child	Full Sibs	Uncle/ Nephew

15 STR loci typed with commercial Identifiler kit

LR calculations were performed with GeneMarker® HIDv1.90

Benefit of Additional Loci Likelihood Ratios with 40 Loci

	15	40	15	40	15	40		
Comparison	LR for 34 & 19	LR for 34 & 19	LR for 18 & 19	LR for 18 & 19	LR for 34 & 10	LR for 34 & 10		
Parent-Child	1.28E+06	6.68E+16	9.08E+05	0.00E+00	0.00E+00	0.00E+00		
Full Siblings	3.22E+04	5.73E+12	2.76E+07	1.57E+19	6.07E-03	3.30E+03		
Half Siblings	7.38E+03	8.63E+11	4.89E+04	4.99E+12	6.65E-01	8.98E+05		
Cousins	1.95E+02	1.32E+08	8.96E+02	1.05E+09	1.52E+00	2.17E+04		
Uncle-Nephew	7.38E+03	8.63E+11	4.89E+04	4.99E+12	6.65E-01	8.98E+05		
Grandparent- Grandchild	7.38E+03	8.63E+11	4.89E+04	4.99E+12	6.65E-01	8.98E+05		
	\Box							
	Par	ent/	Fu	II	Uncle/			
	Ch	nild	Sil	os	Nephew			

LR calculations were performed with GeneMarker[®] HIDv1.90

15 STR loci typed with commercial Identifiler kit

25 STR loci typed with an in-house NIST assay

Hill, C.R., Butler, J.M., Vallone, P.M. (2009) A 26plex autosomal STR assay to aid human identity testing. J. Forensic Sci. 54(5): 1008-1015.

Distributions of Likelihood Ratios

Probabilistic nature of inferring relationships based on genotypes

- Unrelated individuals can appear related (false positives)
 - Incorrect relationships may be suggested
- Related individuals can appear unrelated (false negatives)

Likelihood Ratio Distributions

Complex Pedigree Analysis

- For all genotypes and putative relationships, calculate the probabilities of the genotypes under both hypotheses
- Multiply the LRs of each independent piece of the pedigree by each other (DNA-VIEW does this) OR consider the likelihood of the entire pedigree under the different hypotheses
- Final LR determines how probable the pedigree is for H₁ vs H₂

Brenner C., Symbolic kinship program. Genetics (1997) 145:535-42

US Citizenship and Immigration Services (USCIS)

Immigration cases

- 1,107,126 obtained legal permanent residence in US in 2008
- 103,456 were relatives of US alien resident

• Refugee/asylum cases

- 400 applications processed per day
- 60,108 refugees admitted in 2008
- 34,753 were relatives of applicant
- Support relationship claim with interview and documents
- Fraudulent claims (79%)

Immigration Scenario

We know the genotypes for each individual.

Compute the LR for this situation using software programs.

Combined likelihood ratio

Per locus likelihood ratios

KIn CALc Steven Myers, CA DOJ

Immigration Scenario

<u>Hypothesis 1</u> C and D are full siblings

<u>Hypothesis 2</u> D is unrelated to C

Complex Pedigree Analysis (1)

	AfAm	Cauc	Hisp			
Combined KI	0.0E+00	0.0E+00	0.0E+00			

	Reference Sample Profiles									KI (locus)				
Locus	NF01-11	NF01-34	NF01-32	NF01-19	NF01-12	NF01-7	NF01-33			AfAm	Cauc	Hisp		
D8S1179	10 , 10	12 , 14	13 , 14	14 , 14	13 , 14	13 , 14	13 , 14			0	0	0		
D21S11	28 , 29	28 , 30	31 , 32	28 , 31	30 , 32	30,31	28 , 32			0	0	0		
D7 \$820	9,11	9,9	8 , 12	8,9	9 , 12	9 , 12	9,12			0	0	0		
CSF1PO	12 , 12	10 , 10	10 , 12	10 , 10	10 , 12	10 , 10	10 , 10			0	0	0		
D3S1358	17,18	16 , 17	17 , 17	17 , 17	16 , 17	16 , 17	17 , 17			0	0	0		
TH01	7 , 9.3	6,6	6,9	6,6	6,9	6,6	6,9			0	0	0		
D13S317	11 , 13	11 , 13	8,9	9,13	9,11	9,11	9,11			0	0	0		
D16S539	11 , 12	11 , 14	8 , 12	8,14	11 , 12	12 , 14	8,14			2.276475	1.353816	1.387645		
D2S1338	18 , 22	22 , 23	23 , 25	23 , 23	23 , 25	23 , 23	23 , 25			0	0	0		
D19S433	12 , 14	12 , 14	14 , 14	12 , 14	14 , 14	12 , 14	12 , 14			11.12002	6.863933	13.8489		
VWA	16 , 17	17,18	17 , 20	17 , 17	17 , 20	18 , 20	17 , 18			0	0	0		
TPOX	10 , 11	8,8	8 , 10	8,8	8 , 10	8 , 10	8,8			0	0	0		
D18S51	15 , 18	14 , 16	14 , 17	14,17	14 , 14	14 , 17	16 , 17			0	0	0		
D5S818	12 , 12	12 , 13	11 , 13	11 , 13	11 , 12	12 , 13	11 , 13			0	0	0		
FGA	23 , 24	21,22	21,25	21 , 25	21,25	21,21	21,25			0	0	0		

KIn CALc Steven Myers, CA DOJ

Complex Pedigree Analysis (2)

	AfAm	Cauc	Hisp		
Combined KI	9.5E+16	6.2E+13	3.2E+15		

	Reference Sample Profiles									KI (locus)					
Locus	NF01-18	NF01-34	NF01-32	NF01-19	NF01-12	NF01-7	NF01-33			AfAm	Cauc	Hisp			
D8S1179	12 , 14	12 , 14	13 , 14	14 , 14	13 , 14	13 , 14	13 , 14			3.461538	4.265601	4.205			
D21S11	30 , 32	28 , 30	31 , 32	28 , 31	30 , 32	30 , 31	28 , 32			10.01281	4.797203	2.795726			
D7 \$820	8,9	9,9	8,12	8,9	9,12	9 , 12	9,12			9.153176	10.40631	53.26951			
CSF1PO	10 , 10	10 , 10	10 , 12	10 , 10	10 , 12	10 , 10	10 , 10			6.786704	7.768687	7.775187			
D3S1358	17 , 17	16 , 17	17 , 17	17 , 17	16 , 17	16 , 17	17 , 17			12.5	11.14359	31.10075			
TH01	6,6	6,6	6,9	6,6	6,9	6,6	6,9			41.68242	9.737476	9.28494			
D13S317	9,13	11 , 13	8,9	9,13	9,11	9,11	9,11			35.60111	14.88992	4.134129			
D16S539	12 , 14	11 , 14	8,12	8 , 14	11 , 12	12 , 14	8,14			56.00128	11.45536	18.17815			
D2S1338	23 , 23	22 , 23	23 , 25	23 , 23	23 , 25	23 , 23	23 , 25			25.60973	13.7442	16.46041			
D19S433	12 , 14	12 , 14	14 , 14	12 , 14	14 , 14	12 , 14	12 , 14			11.12002	6.863933	13.8489			
VWA	17,18	17,18	17 , 20	17 , 17	17 , 20	18 , 20	17,18			5.009276	2.143511	2.897961			
TPOX	8 , 10	8,8	8,10	8,8	8,10	8 , 10	8,8			7.272894	12.43107	13.44858			
D18S51	14 , 14	14 , 16	14 , 17	14 , 17	14 , 14	14 , 17	16 , 17			61.24764	8.307958	8.655535			
D5S818	13 , 13	12 , 13	11 , 13	11 , 13	11 , 12	12 , 13	11 , 13			4.183884	11.7036	27.09336			
FGA	21,21	21 , 22	21,25	21 , 25	21 , 25	21 , 21	21 , 25			16	8.307958	14.67035			

KIn CALc Steven Myers, CA DOJ

Complex Pedigree Analysis (3)

	AfAm	Cauc	Hisp		
Combined KI	0.0E+00	0.0E+00	0.0E+00		

		Reference Sample Profiles								KI (locus)				
Locus	NF01-11	NF01-32	NF01-19	NF01-12	NF01-7	NF01-33				AfAm	Cauc	Hisp		
D8S1179	10 , 10	13 , 14	14 , 14	13 , 14	13 , 14	13 , 14				0	0	0		
D21S11	28 , 29	31 , 32	28 , 31	30 , 32	30 , 31	28 , 32				0	0	0		
D7 \$820	9,11	8 , 12	8,9	9,12	9,12	9,12				0	0	0		
CSF1PO	12 , 12	10 , 12	10 , 10	10 , 12	10 , 10	10 , 10				0.520833	0.495932	0.402338		
D3S1358	17,18	17 , 17	17 , 17	16 , 17	16 , 17	17 , 17				0	0	0		
TH01	7 , 9.3	6,9	6,6	6,9	6,6	6,9				0	0	0		
D13S317	11 , 13	8,9	9,13	9,11	9,11	9,11				0	0	0		
D16S539	11 , 12	8 , 12	8,14	11 , 12	12,14	8,14				2.276475	1.353816	1.387645		
D2S1338	18 , 22	23 , 25	23 , 23	23 , 25	23 , 23	23 , 25				0	0	0		
D19S433	12 , 14	14 , 14	12,14	14 , 14	12 , 14	12,14				11.12002	6.863933	13.8489		
VWA	16 , 17	17 , 20	17,17	17 , 20	18 , 20	17,18				0	0	0		
TPOX	10 , 11	8,10	8,8	8,10	8,10	8,8				0.347187	0.687504	0.748578		
D18S51	15 , 18	14 , 17	14,17	14 , 14	14,17	16 , 17				0	0	0		
D5S818	12 , 12	11 , 13	11 , 13	11 , 12	12 , 13	11 , 13				0	0	0		
FGA	23 , 24	21 , 25	21 , 25	21 , 25	21,21	21 , 25				0	0	0		

Complex Pedigree Analysis (4)

	AfAm	Cauc	Hisp		
Combined KI	8.7E+14	5.5E+11	1.2E+13		

		Reference Sample Profiles									KI (locus)					
Locus	NF01-18	NF01-32	NF01-19	NF01-12	NF01-7	NF01-33					AfAm	Cauc	Hisp			
D8S1179	12 , 14	13 , 14	14 , 14	13 , 14	13 , 14	13 , 14					0.076705	0.129605	0.1015			
D21S11	30 , 32	31,32	28 , 31	30 , 32	30 , 31	28 , 32					10.01281	4.797203	2.795726			
D7 \$820	8,9	8 , 12	8,9	9,12	9,12	9,12					7.316314	8.226783	34.27196			
CSF1PO	10 , 10	10 , 12	10 , 10	10 , 12	10 , 10	10 , 10					5.695983	6.426598	6.377532			
D3S1358	17 , 17	17 , 17	17 , 17	16 , 17	16 , 17	17 , 17					12.5	11.14359	31.10075			
TH01	6,6	6,9	6,6	6,9	6,6	6,9					29.13263	7.73316	7.580934			
D13S317	9,13	8,9	9,13	9,11	9,11	9,11					35.60111	14.88992	4.134129			
D16S539	12 , 14	8,12	8,14	11 , 12	12 , 14	8,14					56.00128	11.45536	18.17815			
D2S1338	23 , 23	23 , 25	23 , 23	23 , 25	23 , 23	23 , 25					36.02725	20.39331	24.66132			
D19S433	12 , 14	14 , 14	12 , 14	14 , 14	12 , 14	12 , 14					11.12002	6.863933	13.8489			
VWA	17,18	17 , 20	17 , 17	17 , 20	18 , 20	17,18					5.009276	2.143511	2.897961			
TPOX	8 , 10	8 , 10	8,8	8,10	8,10	8,8					6.76564	11.90222	12.8936			
D18S51	14,14	14 , 17	14 , 17	14,14	14,17	16,17					61.24764	8.307958	8.655535			
D5S818	13 , 13	11 , 13	11 , 13	11 , 12	12 , 13	11 , 13					2.022977	3.074218	5.031624			
FGA	21,21	21,25	21,25	21 , 25	21,21	21,25					22.21359	12.58377	19.99133			

Bayesian Statistics

Estimating Relationship from Genotypes

Estimating Relationships: Bayesian Approach

- What is the **probability of a relationship** given the observed genotypes?
- Often, this is what we want to know
- Different from likelihood ratios, where we calculate the probabilities of the observed genotypes given different hypothesized relationships

Bayes Theorem

Posterior odds=
$$\frac{\Pr(H_p|E)}{\Pr(H_d|E)}$$

What we want to know!

Posterior odds = $LR \times Prior odds$

$$\frac{\Pr(H_p|E)}{\Pr(H_d|E)} = \frac{\Pr(E|H_p)}{\Pr(E|H_d)} \times \frac{\Pr(H_p)}{\Pr(H_d)}$$

What we can measure!

Bayes Theorem Example

- Airplane crash
- 300 victims (unidentified remains)
- DNA profile from parent of one of the victims
- Prior odds could be 1/300 for a parent-child relationship for each of the 300 remains

$$\frac{\Pr(H_p|E)}{\Pr(H_d|E)} = \frac{\Pr(E|H_p)}{\Pr(E|H_d)} \times \frac{\Pr(H_p)}{\Pr(H_d)}$$

Accounting for Background Relatedness

Background Relatedness

- Any two individuals in a finite population are related
 - Must have a common ancestor at some point in the past
- Any relatedness between individuals occurs against a background level of relatedness in the population
 - In humans, background relatedness is low but should be considered

Background Relatedness

- Population substructure
 - Groups of individuals within a population that have some degree of reproductive isolation
 - Allele frequencies are likely to be different from the population as a whole

 Can use population-wide allele frequency estimates with θ correction

Theta (θ) Correction

 Probability that any 2 alleles in the same subpopulation are IBD

Equal to coancestry coefficient (θ) for any 2 individuals

• Equal to the inbreeding coefficient (F) of any single individuals in that group

Conditional Match Probability

- Probability that an unknown member of a population (e.g., perpetrator of crime) would have the profile given that a known person (e.g., suspect who has been wrongly accused) has been found to be of that type
- Probability that an untyped relative will have a certain genotype, given the observed genotype of a relative

Theta (θ) Correction in Forensics

 $Pr(A_{i}A_{i}|A_{i}A_{i}) = [3\theta+(1-\theta)P_{i}][2\theta+(1-\theta)P_{i}]$ $(1+\theta)(1+2\theta)$

$$Pr(A_{i}A_{j}|A_{i}A_{j}) = 2[\theta + (1-\theta)P_{i}][\theta + (1-\theta)P_{j}]$$

$$(1+\theta)(1+2\theta)$$

Conditional match probabilities are greater than unconditional profile probabilities Pr(A_iA_i) and Pr(A_iA_j)

References

Weir B., Anderson A., Hepler A., Genetic relatedness analysis: Modern data and new challenges. Nat. Rev. Genet. (2006) 7:771-80

Weir B., Anderson A., Interpreting DNA Evidence. Summer Institute in Statistical Genetics, Seattle, WA (2006)

Buckleton J., Triggs C., Walsh S, Forensic DNA Evidence Interpretation. CRC Press (2005)

Fung W., Hu, Y-Q, Statistical DNA Forensics. Theory, Methods and Computation. Wily (2008)

Thank you for your attention

Contact:

kristen.lewis@nist.gov 301-975-5205

Funding:

- NRC Postdoctoral Fellowship to Kristen Lewis
- FBI Evaluation of Forensic DNA Typing as a Biometric Tool

NIJ – Interagency Agreement with the Office of Law Enforcement Standards