Large-scale estimation of river discharge from SWOT satellite observations through data assimilation

K. Andreadis¹ D. Moller² E. Rodriguez³ B. Sanders⁴ P. Bates⁵ J. Chaubell³ M. McCann¹ M. Durand¹ D. Alsdorf¹

> ¹Ohio State University ²Remote Sensing Solutions Inc. ³NASA JPL ⁴University of California-Irvine ⁵Bristol University

AGU Fall Meeting 2010

Motivation

- SWOT *direct* observations will include water surface elevations, widths and slopes
- Discharge is very important for hydrology
- Direct estimation of discharge through Manning's equation can be difficult
- Models can predict discharge, but impeded by significant errors
 - Forcings (e.g. precipitation, boundary inflows)
 - Model parameters (e.g. channel characteristics)

Motivation

- SWOT *direct* observations will include water surface elevations, widths and slopes
- Discharge is very important for hydrology
- Direct estimation of discharge through Manning's equation can be difficult
- Models can predict discharge, but impeded by significant errors
 - Forcings (e.g. precipitation, boundary inflows)
 - Model parameters (e.g. channel characteristics)
- Merging SWOT observations with modeling predictions via data assimilation
- Developing and testing of SWOT assimilation framework for discharge estimation

Experimental design

- "Virtual" SWOT observations
- Synthetic data assimilation experiment

Models

- LISFLOOD-FP raster-based hydrodynamics model
- ▶ 1-D solver for channel flow
- 2-D flood spreading model for floodplain flow
- Kinematic, Diffusive and Inertial formulations
- Requires information on topography, river channel characteristics and boundary inflows
- Assumption of rectangular channel
- Has been successfully applied in a number of river systems (mostly smaller scale)

Data assimilation

- A number of assimilation techniques available
- Extended Kalman filter (EKF)
 - Requires explicit modeling of model error covariance, and tangent linear models
- Ensemble Kalman filter (EnKF)
 - Requires ensemble of model states
- EKF is used, estimating the model error covariances using the NMC method
 - assumes error correlations are similar to correlations of differences between successive forecasts
- Every SWOT pass is assimilated separately (filtering)
 - Smoothing could be done by assimilating observations for every orbit cycle

Study area

- ► ~1000 km reach of the Ohio River basin
- Drains an area of ~220,000 km²
- Topography from National Elevation Dataset (30 m)
- River topology from HydroSHEDS
- Channel width and depth from developed power-law relationships
- Modeled main stem with inflows from tributaries

Simulating SWOT observations

- Synthetic observations from the SWOT instrument simulator
- Produces data with correct SNR, geometric and noise characteristics
- Example interferograms and processing chain

Open-loop simulations

 True water depth and differences of three open-loop simulations from truth

- Channel discharge for one time step
- Inflow error dominates simulated discharge
- Errors in channel characteristics play a less significant role

River discharge

- Errors in inflows as well as channel characteristics
- Ingesting SWOT observed WSE results in improved discharge estimates

Discharge errors

- Comparison of predicted discharge at study basin outlet
- Spatially averaged error along the river channel
- Assimilated discharge estimates are clearly better
- Issue with temporal persistence, related to inflow errors

Impact of different model errors

- Synthetic data assimilation framework allows exploring impact of different model errors to discharge estimate
- Examples of assimilation with errors only in boundary inflows, and channel characteristics

Sensitivity to coverage and observation errors

How much is the skill decreased when compared to observing the entire domain in one pass?

- SWOT observations will have uncertainty estimate associated
- Impact of assumption about observation error

Future research

- Explicitly model tributaries
- Massively parallel computing towards global applications
- Evaluate different assimilation techniques and error covariance modeling approaches
- Assimilate additional SWOT observables (top width, slopes)
- Evaluate information content of SWOT observations
 - Estimate river channel bathymetry
 - Calibrate hydrodynamic and hydrologic models