Estimating bathymetry and river depth in the Ohio River using simultaneous state-parameter
estimation with an Ensemble Kalman filter
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Water and Ocean Topography (SWOT) mission can be used to complement the in situ gage network. DS B werde Tlrgu::ated L(':lsgg;he LISFLOO[.)t-IfP O Bathymetry does not change within relatively short periods
SWOT is a swath mapping radar interferometer that will measure water surface elevation (WSE), both Eus | J\ model (Bates and De Roo, 2000) wi -> Update bathymetry for next data assimilation
g \ USGS observed flows and bathymetry day = t cvcle for SWOT
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Since SWOT will be launched during the 2019-2020 time frame, we generated synthetic SWOT WSE 180 - - (blue), as well as the discharge romthe EnKE  EnKE EnKE
. USGS gage (green) (top). The estimates Y N\ ~

measurements for the main stem of the Ohio River. For the measurements, we simulated the true

hydraulic parameters using the LISFLOOD-FP hydrodynamic model and corrupted the results by adding of the bathymetry and WSE are shown

. (bottom). The data were used to .
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height errors based on the SWOT instrument design. The ensemble Kalman filter (EnKF) was used to s , T I T F
estimate the river depths, given the SWOT WSE measurements and WSE predictions by LISFLOOD-FP. We 1:2 | | genleratte syntllsetlc SWOT data and to Yo K=1(peCx)H " [H(poCy)H " +C,
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with the Variable Infiltration Capacity (VIC) model, and introduced errors into the VIC precipitation .
forcing. Errors in channel bathymetry were modelled using an exponential correlation function with a . b) . ‘ ‘ Q)
spatial correlation length of 100 km. The experiments showed that the EnKF update was able to recover Synthetlc SWOT WSE measurements —
the bathymetry from WSE measurements with 0.52 m reach-average accuracy, which is 67.8% less than Conservative assumptions for the SWOT observation (Alsdorf et al., 2007 ) 3 3 10000
the initial guess. The experiments also confirmed the usefulness of a multi-temporal data set for 0 Spatial resolution: 50 m (both along-track and cross-track) 5 g a000.
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APPROACH Initial guess for unknown parameters Fig.ure 7. Initial estimates of bathymetry and wate.r depth (da){ 3) are shown. After filtering, the
Assumptions for the model include: estimates of bathymetry and water depth clearly improve their pattern and accuracy (19.8% and
, , 0 Unknown parameters: Bathymetry (z) and Discharge 38.3%, respectively).
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(Fig. 3) N ot cons | o s o et O As the time series (cycle) becomes longer, the accuracy of the bathymetry estimate improves.
| O The errors of the bathymetry estimate increase, depending on the bias of the boundary inflows.
@ O Future work will investigate methods to reduce the effect of the bias of the boundary inflows.
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Figure 5. Ensembles of 20 possible discharges of the main
stem (top left) and 11 major tributaries (arranged in order of
location from upstream to downstream) are shown.
Boundary flows were generated by the VIC model.
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