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ABSTRACT: Three-dimensional remote sensing promises a giant leap forward for surface-water hydrology in much the same way
that radar altimetry transformed physical oceanography. However, the complex geometries of small terrestrial water bodies
introduce difficulties, particularly with respect to trade-offs between changing water depth and inundation area. We use in situ
measurements of water-surface stage (ΔH/dt) and remotely-sensed area (A) to compute time varying storage changes (ΔS) in nine
lakes of the Peace-Athabasca Delta, Canada. Despite their identical geomorphic setting, regression slopes between ΔH and A
vary significantly between lakes, primarily from a predictable ‘area-effect’ but also small bathymetric variations between basins.
On average, lateral contraction/expansion (versus stage adjustment) contributes as little as 7% (versus 93%) to as much as 76%
(versus 24%) of overall storage change ΔS. We conclude that both surface-area and ΔH/dt, rather than just either alone, must be
measured to confidently estimate ΔS from space. Copyright © 2009 John Wiley & Sons, Ltd.
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Introduction

Satellite remote sensing of surface water fluxes and storages
in rivers, lakes, reservoirs and wetlands is an immature but
rapidly growing field. Except for a handful of early Landsat
studies (reviewed by Smith, 1997), nearly all research began
in the 1990s and has experienced sustained momentum only
in recent years (see new reviews by Alsdorf et al., 2007a;
Smith and Pavelsky, 2008). One common approach is to
measure spatial variations in inundation area to estimate
changing stage or discharge (e.g. Smith et al., 1995; Smith
et al., 1996; Hamilton et al., 1996; Pietroniro et al., 1999;
Al-Khudhairy et al., 2002; Xu et al., 2004; Zhang et al., 2004;
Brakenridge et al., 2005; Brakenridge et al., 2007; Temimi
et al., 2005; Ashmore and Sauks, 2006; Smith and Pavelsky,
2008). Another is to obtain point measurements of water
surface elevation using radar altimetry (e.g. Koblinsky et al.,
1993; Birkett et al., 2002; Coe and Birkett, 2004; Kouraev et
al., 2004; Calmant and Seyler, 2006; Leon et al. 2006). Still
other approaches include combining satellite observations
with topographic data (Brakenridge et al., 1998; Bjerklie
et al., 2005; Matgen et al., 2007; Schumann et al., 2008a,
2008b), hydraulic models (Horritt and Bates, 2002; Bates et al.,
2006; Andreadis et al., 2007; Roux et al., 2008; Durand
et al., 2008), or informed estimates of channel properties
(Lefavour and Alsdorf, 2005).

Perhaps the most exciting advance is the direct mapping
of both water surface height and area changes with radar,
allowing direct, three-dimensional observation of storage

changes (Alsdorf, 2003; Alsdorf et al., 2000; Alsdorf et al.,
2001; Alsdorf et al., 2007b; Frappart et al., 2005; Frappart et
al., 2006; Frappart et al., 2008). While it may seem obvious
that both height and area should be measured, the remote-
sensing community has traditionally been divided on which
is most important because, except for repeat-pass interfero-
metry, currently existing technologies can retrieve only one or
the other. However, a new satellite mission with a fully three-
dimensional imaging capability has now been proposed (the
SWOT, Surface Water Ocean Topography wide-swath altimeter,
see Alsdorf et al., 2007a and http://bprc.osu.edu/water).
Because SWOT would map water surface elevation changes
continuously over space and time, it represents a giant leap
forward for terrestrial hydrology in much the way that radar
altimetry has transformed our understanding of physical
oceanography. Before radar altimeters began providing three-
dimensional surface height fields of the world’s oceans,
oceanographers used point-based tide gauges. SWOT portends
an analogous revolution for today’s terrestrial hydrologists, cur-
rently using a scattering of river gauges and lake level stations.

For the purpose of monitoring water storage variations in
lakes, reservoirs or wetlands, the key measurements retrieved
by SWOT would be repeat estimates of water surface area
(A) and stage change (ΔH/dt) (Alsdorf et al., 2007a). These
two variables would then be multiplied to estimate storage
changes for the water body (ΔS/dt, in m3). While seemingly
straightforward, the real-world relationship between the
two observables A and ΔH/dt remains largely unexplored.
Here, we present a first empirical study of this relationship,

http://bprc.osu.edu/water
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using remotely-sensed and in situ measurements to essentially
simulate SWOT retrievals for nine low-relief lakes in the
boreal Peace-Athabasca Delta (PAD), Canada. Owing to their
varying degrees of hydrologic linkage with the nearby Athabasca
River (Pavelsky and Smith, 2008), these lakes are sensitive to
nearby river discharge variations and thus experience changing
water storages throughout the year.

Study Site and Methods

The PAD is formed by the convergence of the Peace and
Athabasca Rivers near their confluence with Lake Athabasca
in northeastern Alberta, Canada (Figure 1). Lying partially
within Canada’s Wood Buffalo National Park and covering
over 5000 km2, it ranks among the world’s most ecologically
significant wetlands and is a UNESCO World Heritage Site
and Ramsar Convention Wetland. The PAD is characterized
by low relief (<10 m) and high complexity, consisting of
hundreds of shallow lakes, wetlands, and distributary
channels with varying degrees of hydrologic connectivity.
Low-frequency, high-magnitude ice-jam floods in the Peace
and Athabasca Rivers are crucial for replenishing ‘perched’
lakes and wetlands in the PAD. In absence of water recharge,
lakes and wetlands gradually infill with Salix-dominated
vegetation to the detriment of PAD ecosystems (Prowse and
Conly, 1998; Toyra and Pietroniro, 2005; Timoney, 2006).
For further description of PAD inundation hydrology see
previous work by Peters et al. (2006) and Pavelsky and Smith
(2008).

Time series of lake stage (ΔH/dt) were collected for nine PAD
floodplain lakes during summer 2006 (Lakes 1–9, Figure 1)
and six lakes during summer 2007 (Lakes 1–5 and 9). Lakes
were selected to capture the full range of lake sizes within
the PAD (1·5 km2 to 1313·2 km2, Table I). For each site, stage

variations were logged every 15 minutes using a submerged
Solinst Levelogger® pressure transducer, later corrected for
atmospheric pressure variations using Solinst Barologgers®.
Precision of the final corrected stage fluctuations is ±1 cm.
For all but two locations, stage changes were converted to
absolute water surface elevation values using differential
global positioning system (GPS) surveys with accuracy of ±1
to 5 cm (referenced to the Canadian Gravimetric Geoid Model
2000, http://www.geod.nrcan.gc.ca/publications/papers/abs26_
e.php), enabling absolute referencing of ΔH/dt data across
study years. For Lakes 1 and 5, however, stage data for 2006
and 2007 could not be merged because no benchmarking
GPS survey was conducted in 2006. Therefore, for these
two sites each year is presented as a separate time series.
Bathymetric transects along the long axes of Lakes 3 and 4
were obtained with ~5 cm precision and 50 m posting using
a stadia rod.

For all sites, temporal variations in lake inundation area A
were obtained using a daily time series of 250 m MODIS near-
infrared satellite images (band 2, 841–876 nm, http://redhook.
gsfc.nasa.gov/~imswww/pub/imswelcome/). Inundated area
for each lake was determined by binary classification using a
dynamic threshold (T) defined as:

T = W + (L – W)d

where W is the average reflectance value of 12 known and
consistent water pixels, L is the average reflectance value of
12 known and consistent land pixels, and d is a constant
between 0 and 1·0 (0·6 used here) (Pavelsky and Smith,
2008). Cloud presence was detected using a simple threshold
(2·5T), and in each image any lake with cloud-covered area
greater than 0·0 was removed from consideration. Final time
series of lake area contain 29–100 observations for the nine
study lakes (Table I).

Figure 1. In situ measurements of stage (ΔH/dt, in centimeters), and remotely-sensed estimates of water surface area (A, in m2) were collected
for these nine study lakes in the Peace-Athabasca Delta (PAD), Canada.

http://www.geod.nrcan.gc.ca/publications/papers/abs26_e.php
http://redhook.gsfc.nasa.gov/~imswww/pub/imswelcome/
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Results

The product of our in situ measurements of stage changes
(ΔH/dt) with corresponding same-day, MODIS-derived inunda-
tion areas (A) yields time-series of changing water storage, ΔS
(Figure 2). Values are plotted in log-normal space owing to
the large range of lake sizes in this study. Storage changes
range from 813 to 1 033 532 500 m3, with largest values
found in largest lakes. Note that ΔS represents the storage
change (relative to its long-term observed minimum ΔSmin),
not the total volume of storage within the lake basin.

In both 2006 and 2007, all of the measured lakes display a
trend of decreasing water storage throughout the summer
(Figure 2). This result is in general agreement with our field
observations of maximum PAD inundation immediately after
the spring freshet, followed by gradual stage drawdown
throughout the summer. Furthermore, oscillating storages in
two of the sites (Lakes 2 and 4) reflect their known hydrologic
connectivity to the Athabasca River via distributary channels
(Wolfe et al., 2007, Pavelsky and Smith, 2008). As such, the
remotely-sensed lake storage changes appear to be sensitive
indicators of nearby river discharge variations.

A positive relationship is found between remotely-sensed
inundation areas (A) and ΔH/dt data for all lakes in all years
(Figure 3). However, the relationship is not uniform despite
the similar geomorphic setting for all study sites. A simple
linear regression model between the two variables yields

regression slopes ranging from as low as +0·09 %/cm to
+1·39 %/cm, with a mean value of +0·79 %/cm (Table I).
Coefficients of determination (r2) range from 0·32 to 0·83,
with a mean value of 0·53. Inspection of Figure 3 suggests that
with the exception of Lake 2, a linear model is a reasonable
descriptor of area–stage relationships in these lakes.

In general, small lakes are characterized by steep area–
stage relationships whereas large lakes are not (Lakes 1, 3, 5,
versus 7, 8, 9; Figure 3 and Table I). This overall pattern
emerges most clearly in a log-normal plot of mean lake area
versus each lake’s corresponding regression slope (Figure 4).
Similarly, lake-averaged values of the relative apportionment
between stage (Hc) versus areal expansion/contraction (Ac)
contributions to overall ΔS are greatest for large lakes and
lowest for small lakes (Table I). Put another way, in large lakes
more of the overall volumetric storage change consists of a
stage adjustment; in small lakes more of it consists of a
surface-area adjustment.

Two bathymetric survey cross-sections of Lakes 3 and 4
revealed maximum depths of just 95 cm and 80 cm, respec-
tively (Figure 5). Lake 3 has a relatively simple, slightly asym-
metric convex bathymetry, whereas Lake 4 is more complex
with three saddles instead of one. Taken together with their
respective wetted-perimeter width/depth indicate Lake 3 may
be characterized as having the ‘steeper’ bathymetry of the
two (width/depth = 7677 for Lake 3; width/depth = 8982 for
Lake 4).

Table I. Summary of results 

Lake n Mean area (km2)
Regression

slope (%/cm) r2
ΔA/ΔH

(km2/cm) Hc Ac

Lake 1 – 2006 57 1·5 ± 0·5 1·39 0·37 0·21 0·52 0·48
Lake 1 – 2007 38 2·8 ± 1·3 1·42 0·71 0·13 0·50 0·50

Lake 2 84 3·4 ± 2·0 0·80 0·55 0·15 0·28 0·72
Lake 3 100 6·7 ± 2·1 0·97 0·48 0·13 0·71 0·29
Lake 4 100 7·1 ± 4·0 0·56 0·67 0·15 0·24 0·76

Lake 5 – 2006 54 15·0 ± 3·3 1·18 0·17 0·83 0·67 0·33
Lake 5 – 2007 29 31·6 ± 15·2 0·87 0·83 0·30 0·65 0·35

Lake 6 52 17·5 ± 1·7 0·80 0·53 1·38 0·73 0·23
Lake 7 51 80·6 ± 3·8 0·15 0·40 1·06 0·91 0·09
Lake 8 49 110·1 ± 7·3 0·44 0·59 4·25 0·86 0·14
Lake 9 46 1313 ± 60·2 0·09 0·32 3·20 0·93 0·07

Note: Number of samples (n), mean lake inundation area and variability (±1σ), regression slopes and r2 values from Figure 3, and lake-averaged
inundation change per centimeter of stage (km2/cm). The values of Hc and Ac capture the relative importance of each lake’s expansion/contraction
versus stage adjustments, respectively, in determining total storage change (ΔS). Lakes 1 and 5 could not be benchmarked across years and are sep-
arated accordingly.

Figure 2. Time-series of volumetric water storage change, ΔS, the product of water-surface area, A, and stage change (ΔH/dt) in our study sites.
Lakes 1–9 were monitored in 2006, Lakes 1–5 and 9 were monitored in 2007. Log ΔS is shown owing to the great range in lake size. This figure
is available in colour online at www.interscience.wiley.com/journal/espl
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Discussion and Conclusion

A global capacity to measure storage changes in water bodies
and discharge changes in rivers, from space, would transform
hydrologic science. But the field remains immature. A key
issue is the transferability of retrieval algorithms between sites,
or in the case of rivers, to different locations downstream. The
early results shown here suggest that even similar-appearing
lakes can display individual behavior with respect to their
three-dimensional inundation geometries. This is reminiscent
of the situation with rivers, where remotely sensed at-a-station
hydraulic geometries are highly variable at short length scales,
but approach a constant value at length scales exceeding
2–3 × valley width (Smith and Pavelsky, 2008). Unlike rivers,

however, the hydraulic geometries of lakes and wetlands do
not lend themselves to spatial averaging over a long axis. The
key, therefore, is three-dimensional imaging, which obviates
the need to compute area–stage relationships as we have
done here. Three-dimensional imaging also sidesteps the
havoc introduced by lakes separating, merging, or shifting as
topographic sills are overtopped, a notorious difficulty that
requires advanced informatics to solve (e.g. Sheng et al.,
2008).

The observed positive correlations between all remotely-
sensed inundation areas and in situ water levels affirm the
notion that fluctuations in stage, with few exceptions, trigger
changes in inundation area that are observable from space.
Furthermore, assumption of a linear response between the two

Figure 3. Area–stage relationships for all study lakes, constructed from in situ measurements of stage change (ΔH/dt) and same-day MODIS
measurements of lake surface area (A). Each point represents one stage measurement and one satellite image. Regression slopes are generally
linear except in Lake 2, and are generally steepest (more area-sensitive) in smaller lakes. Despite similar geomorphic settings, significant
variations are found in area–stage relationships between lakes.
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variables appears warranted, at least for eight of the nine lakes
examined here (Lake 2 being the sole exception, Figure 3).
However, a unit increase or decrease in stage does not trans-
late to equivalent storage changes at all lakes. Area–stage
regression slopes vary significantly between them, and even
in the same lake for different years (Figure 3, Table I). One
immediate explanation for these differences is geomorphic
control, i.e. lake depressions with gently sloping shorelines
are expected to display more sensitive area–stage relationships
(steeper regression slopes) than steep ones. But this expecta-
tion was not validated by our two bathymetric surveys: Lake 3
has a slightly smaller width/depth ratio but steeper regression
slop (0·97 %/cm), whereas Lake 4 has larger width/depth ratio
but gentler regression slope (0·56 %/cm, Table I).

However, for this particular collection of wide, shallow
lake basins in the PAD, bathymetric subtleties are secondary
to contrasts in overall lake size. In general, large lakes tend to
have ‘flatter’ area–stage regression slopes (Figure 3) meaning

that ΔS is driven more by changes in stage than changes in
inundation area (i.e. Hc is greatest in the largest Lakes 7, 8, 9;
whereas Ac is greatest in the smallest Lakes, 1, 2, 4, Table I). It
is possible that large lakes, with their higher wind fetch and
deeper littoral cells, experience deeper nearshore erosion and
therefore steeper shorelines, but a more likely explanation for
this observed ‘area effect’ lies in geometry, not geomorphology:
For any polygon, as perimeter increases its perimeter/area
ratio declines non-linearly (depending on shape), roughly what
is seen here (Figure 4). Since lateral expansion/contraction
processes occur mainly around a lake’s perimeter, its regres-
sion slope (Figure 3), and area-change apportionment Ac

(Table I) generally diminish with increasing lake size. As such,
a first-order ‘area-correction’ (e.g. weighting the contribution
of ΔH by p/A where p = lake perimeter and A its surface area)
should be applied in studies using remotely-sensed inunda-
tion or height variations alone to infer ΔS. The overall effect
of this correction would be to weight surface area changes
more strongly in small lakes and height changes more
strongly in large lakes for the purpose of estimating storage
change. Note that this ‘area-effect’ correction becomes
unnecessary when both A and ΔH/dt are measured directly,
such as done here in situ or as would be obtained by SWOT
in the future. However, it does influence satellite design
considerations with respect to determinations of acceptable
measurement error: For large lakes, precision in the water-
surface height retrieval is most important; whereas for smaller
lakes precision in the water-surface area retrieval becomes
increasingly crucial.

It is clear from Figure 4 that even after correcting for lake
area (i.e. ‘subtracting’ the regression line in Figure 4), residual
contrasts still remain between area–stage relationships among
different lakes. Clearly, the trade-off between lateral expansion/
contraction (Ac) or vertical stage adjustment (Hc) to accom-
modate changing water storage varies significantly from one
water body to the next depending on lake bathymetry, hydro-
logic connections to distributary channels, and other site-
specific factors. Therefore, remote-sensing estimates of ΔS based
on ‘height-only’ or ‘area-only’ methods each miss part of the
picture; both variables must be recovered for best success.
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