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1. INTRODUCTION  

1.1. PURPOSE 

Software engineering has become a significant part of the overall engineering of modern safety-
critical systems, ranging from weapons systems, to avionic and other vehicle control systems, to 
industrial control systems, to medical devices. In these systems, Commercial Off-The-Shelf 
(COTS), open source, and other non-developmental software is used to monitor and control 
physical processes the failure of which could lead to loss of human life or other catastrophic 
mishaps. 

Control of weapon systems requires the Navy system and software developers to fully 
understand and develop new techniques for assessing and mitigating the safety hazards and 
security risks to Navy weapon systems imposed by these imperatives. The purpose of this white 
paper is to discuss the safety hazards that can arise in safety-critical component-based software-
intensive systems (also known as “software-reliant systems”) such as weapons systems, as well 
as the security risks that can result in safety mishaps (i.e., “safety-impacting security”). The 
paper also discusses assessment and analysis techniques that can be used to pinpoint and assess 
such hazards and risks, and architectural engineering countermeasures that can be used mitigate 
those that cannot be avoided or eliminated. 

Specifically, the paper discusses: 

• The types of anomalous, unsafe, and non-secure behaviors that can emerge when 
components interact in component-based systems; 

• Analysis and assessment techniques that can be used to predict where and how such 
anomalous behaviors are likely to occur; 

• Architectural engineering countermeasures that can be used by the system’s developer to 
either prevent such behaviors or to contain and minimize their impact, thereby mitigating 
the risk they pose to the safe, secure operation of the system. 

1.2. SCOPE 

1.2.1. In Scope 

This paper’s focus is limited to safety and safety-impacting security issues that arise from 
assembly of software components, including unsafe, non-secure, or otherwise anomalous 
behaviors that arise within a software component due to its interaction with another component.  

This paper discusses technical analysis and testing methods to predict safety hazards and safety-
impacting security risks (defined in Section 2) that are likely to arise in software-intensive 
safety-critical and safety-relevant component-based software-intensive systems.2 Such hazards 
and risks emerge from: 
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• interactions between the software components of the system; 

• interactions between the system’s software components and any hardware components 
from which the software components obtain data of some sort (e.g., mechanical sensors). 

The paper also discusses software architectural engineering techniques and tools that can be used 
to mitigate those emergent risks and hazards. 

Finally, this paper discusses testing and analysis techniques and tools for assessing the safety and 
safety-impacting security properties of individual components, pairs of interacting components, 
and whole component-based systems, and for assessing the effectiveness of controls and 
countermeasures implemented to mitigate safety hazards and security risks in such systems. 

1.2.2. Out of Scope 

This paper does not address: 

• Techniques for assessing or mitigating hazards and risks emerging from interactions 
exclusively between hardware components, with no software involved.  

• Required or desirable properties in software-intensive systems other than safety and 
security, such as quality, reliability, performance, and usability. 

• System-of-Systems (SoS) issues, except those challenges and considerations that pertain 
equally to the interactions among components in a single system and the interactions 
among systems-as-components in a larger SoS. 

• Information assurance and cyber security as they pertain to safety-critical software-
intensive component-based systems. 

• Operational safety and security of component-based systems in deployment/production. 

• Software engineering and assurance practices and tools for use in the original 
development of software components, or general information on how to develop 
individual software components to be safe and secure when operating in isolation. 
However, the authors recognize that such information may be of interest, and so a 
number of useful resources about safe and secure software engineering are identified 
below. 

INFORMATION RESOURCES ON DEVELOPING SAFE SOFTWARE 

• DOD, Joint Software Systems Safety Engineering Handbook, Draft Version 0.95, 30 
September 2009. 
http://www.acq.osd.mil/atptf/guidance/Draft_Software_Safety_Handbook_2009-11-11.pdf 

• DOD, Software System Safety Handbook, December 1999. http://www.system-
safety.org/Documents/Software_System_Safety_Handbook.pdf 
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• North Atlantic Treaty Organization (NATO) Conference of National Armaments Directors 
(CNAD) Ammunition Safety Group, Guidance on Software Safety Design and Assessment of 
Munition-Related Computing Systems, AOP-52 (Edition 1), 9 December 2008. 
https://acc.dau.mil/GetAttachment.aspx?id=272390&pname=file&aid=42035&lang=en-US 

• National Aeronautics and Space Administration (NASA), NASA Software Safety Guidebook, 
NASA-GB-8719.13, 31 March 2004. http://www.hq.nasa.gov/office/codeq/doctree/871913.pdf 

• Federal Aviation Administration (FAA), FAA System Safety Handbook, 30 December 2000. 
Specifically Chapter 10: “System Software Safety”. Also: Appendix J: “Software Safety”. 
http://www.faa.gov/library/manuals/aviation/risk_management/ss_handbook/media/Chap10_1
200.pdf. Also: 
http://www.faa.gov/library/manuals/aviation/risk_management/ss_handbook/media/app_j_12
00.pdf 

• Department of Energy (DOE), Safety Software Guide for Use with 10 CFR 830, Subpart A, 
Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance, DOE G 414.1-4. 
https://www.directives.doe.gov/directives/current-directives/414.1-EGuide-4/at_download/file. 
Also: Related DOE software quality assurance directives and manuals. 
https://www.directives.doe.gov/search?Title=%22DOE+o+414.1c%22&Subject:list=status:+cu
rrent&submit=Search 

• Massachusetts Institute of Technology (MIT) Aero/Astro Software Engineering Research 
Laboratory Papers. http://sunnyday.mit.edu/papers.html 

• Leveson, Nancy G., Safeware: System Safety and Computers (Reading, Mass.: Addison-
Wesley, 1995). 

• Herrmann, Debra S., Software Safety and Reliability (Los Alamitos, CA: Wiley-IEEE 
Computer Society Press, 2000). 

• Wichmann, Brian A. (editor), Software in Safety-Related Systems: Special Report 
(Chichester, UK: John Wiley and Sons/BCS, 1992). 

• Fowler, Kim (editor), Mission-Critical and Safety-Critical Systems Handbook: Design and 
Development for Embedded Applications (Burlington, MA: Newnes Publishing, 2009) 

INFORMATION RESOURCES ON DEVELOPING SECURE SOFTWARE 

• Goertzel, Karen Mercedes, Theodore Winograd, et al., for the Department of Homeland 
Security (DHS) and DOD Data and Analysis Center for Software, Enhancing the 
Development Life Cycle to Produce Secure Software, October 2008. 

• DHS, Build Security In portal. https://BuildSecurityIn.US-CERT.gov 

• Broy, Manfred, Johannes Grunbauer, and Tony Hoare (editors), Software Systems Reliability 
and Security (Amsterdam, The Netherlands: IOS Press, 2007) 

• Daswani, Neil, Christoph Kern, and Anita Kesavan, Foundations of Security: What Every 
Programmer Needs to Know (New York, NY: Springer-Verlag, 2007). 
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1.3. INTENDED AUDIENCE 

The primary intended audience for this document includes architects, developers, and engineers 
responsible for the software elements within safety-critical and/or safety-relevant systems.  

The secondary intended audience for this document includes: 

• Engineers responsible for the overall architecture (hardware + software) of safety-
critical/safety-relevant systems: This document should increase their understanding of the 
safety and security issues that can arise in component-based system development; 

• Developers and other technical advisors to those responsible for acquisition/selection for 
reuse of the software components that will be used in such systems: This document 
should increase their understanding and ability to account for the hazards and risks that it 
may not be possible to mitigate solely at the software architecture level, but which may 
require adjustments to the hardware and whole system architectures as well; 

• Software developers of individual software components: This document should increase 
their understanding of the issues associated with assembly of such components, and 
should inspire them to adopt software engineering and assurance and practices to render 
their components more robust “out of the box”, and thus less likely to manifest hazardous 
or risky behaviors when assembled with other components. 

1.4. ASSUMPTIONS 

The reader is presumed to be well-versed in general system and software engineering concepts 
and terminology, and in system safety concepts and terminology.  

The reader is also presumed to be somewhat familiar with basic component-based software 
development concepts and terminology.  

                                                
2 Such systems include weapons systems, avionic systems, automotive computer systems, some medical devices, 
control systems for nuclear power plants, air and ground traffic control systems, etc. 
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2. DEFINITIONS 

Before proceeding, the reader should familiarize himself/herself with the following terms, as 
they are used in this document. Note that additional definitions of interest can be found in the 
Glossary in Appendix A:A.2. 

2.1. SYSTEM 

MIL-STD-882D defines system as “a composite, at any level of complexity, of personnel, 
procedures, materials, tools, equipment, facilities, and software.  The elements of this composite 
entity are used together in the intended operational or support environment to perform a given 
task or achieve a specific purpose, support, or mission requirement”. Similarly, the Defense 
Acquisition University defines system as “the combination of two or more hardware, software, 
and/or data components in such as way that they can interoperate to satisfy one or more 
functional requirements”.3 While this definition is certainly valid, in the context of component-
based software systems, the definition4 posited by the International Council on Systems 
Engineering (INCOSE) may be more helpful: “A system is a construct or collection of different 
elements that together produce results not obtainable by the elements alone. The elements, or 
parts, can include people, hardware, software, facilities, policies, and documents; that is, all 
things required to produce systems-level results. The results include system level qualities, 
properties, characteristics, functions, behavior and performance. The value added by the system 
as a whole, beyond that contributed independently by the parts, is primarily created by the 
relationship among the parts; that is, how they are interconnected.” 

2.2. SOFTWARE-INTENSIVE SYSTEM 

According to International Organization for Standards and International Electrotechnical 
Commission (ISO/IEC),5 a software-intensive system is any system in which software 
contributes essential influences to the design, construction, deployment, and evolution of the 
system as a whole.  More simply, a software-intensive system, is any “system that is heavily 
dependent, or reliant, upon software” for its functionality.6 A third definition asserts that to be 
considered software-intensive, a system need not necessarily have software implement the 
largest part of its functionality as long as software represents largest portion of the system’s 
development costs, development risk, and/or development time.7 

There is no question that safety-critical and safety-relevant systems are becoming increasingly, if 
not exclusively, software-intensive. “Systems in general are becoming increasingly software-
intensive. Processors are embedded everywhere and networked computing is ubiquitous—in 
vehicles, buildings, appliances, workplaces, and other entities in which humans participate or 
with which they interact.”8 Moreover, “software-intensive systems include large-scale 
heterogeneous systems, embedded systems for automotive applications, telecommunications, 
wireless ad hoc systems, business applications with an emphasis on web services etc. Our daily 
lives depend on complex software-intensive systems, from banking to communications to 
transportation to medicine.”9  
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Software-intensive systems clearly include weapons systems. “Modern weapon systems 
increasingly depend on large amounts of real-time, safety-critical, embedded software to achieve 
their mission objectives.”10 It is, in fact, Navy policy to consider any system to be software-
intensive, and to be governed by acquisition and engineering policy that applies to software-
intensive systems, unless a compelling case can be made for why it is not.11 

2.3. COMPONENT 

A component is a stand-alone piece of software that includes enough functionality to be useful 
on its own, i.e., without being assembled into a larger system, but can also be used as a building 
block to create larger, more complex software systems. The feature of a component that enables 
it to be assembled with other components into a system is its built-in interface(s). Component 
interfaces are usually based on standards (de facto or de jure). 12 Indeed, along with autonomy, 
built-in interface(s) is one of the features that distinguishes components from other software 
entities (e.g., compilation units).13 A component may be a software module, i.e., the smallest 
autonomous unit of decomposition in a software-based system, or it may be a larger entity which 
is itself assembled from smaller components. The difference between a module and a component 
is that a module need not be self-contained, while a component must. 

The following is a summary of the required features and properties of components: 

• Component service specification:14 Interactions between components can be 
characterized in terms of provision by one component and consumption by another of a 
service.15 16 The service (function or computation) one component provides to another, 
the services it requests from the other component, and the details of the interface(s) by 
which these provisions and requests are made can be specified as a contract between the 
consumer component and the provider component (see below).17 The assumptions a 
provider component has about the contractual obligations they are expected to fulfill in 
order to consume its service are also explicitly stated in the service specification, as are 
the preconditions or dependencies that it expects those component to impose on it.  
 The service specification includes the usage definition, or “interaction scheme”, 
that describes how the service-providing component is to be located, how its control 
flows are to be synchronized with that of the consumer component, which 
communications protocol(s) it will use to communicate with the consumer component, 
how the data it generates as output and receives as input are to be encoded, how different 
“qualities of service” (e.g., security, safety, transaction control, etc.) are to be achieved, 
etc. This usage description should be sufficiently detailed that the developer of another 
component can implement that component with the ability to successfully consume the 
service provided by the first component. 

• Precisely defined, contractually specified interfaces:18 19 20 By “contractually-
specified”, we mean that the interfaces satisfy certain obligations, which can be 
characterized as a contract between the service-providing component and the service-
consuming component. These obligations ensure that independently-developed 
components recognize and obey the same set of rules that govern how they predictably 
interact within standard build-time and run-time environments.  
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 The interface used between two components can be thought of as defining the set 
of intercomponent dependencies that flow from the service-providing component to the 
consuming component, i.e., what the service-provider expects/requires from the 
consumer in order to provide its service to that consumer. The components’ shared 
interface also provides the mechanism by which each component can communicate its 
assumptions to the other, and can determine whether there is a match or mismatch 
between its assumptions and those of the other component.21 Such mismatches can inhibit 
or prevent the successful assembly of two components because components can interact 
successfully only when they share consistent assumptions about what each will provide to 
or require from the other.  
 While some assumptions necessarily pertain to the unique service (function or 
computation) each component brings to the interaction, most of the assumptions can be 
standardized across all components, and can thus be expressed as a standard component 
interface that can be replicated across multiple components. Components are often 
categorized according to the standard interface(s) they implement, e.g., Web service 
components, Java Enterprise Edition (EE)/ Java Bean components, Eclipse components, 
.NET components, Distributed Component Object Model (DCOM) components, 
Common Object Request Broker Architecture (CORBA) components..  

• Independence of any dependencies on a fixed set of clients, services, or resources:22 
The component can provide its service to any client(s) that provides the requisite 
interface and satisfies the specified usage assumptions of the first component. While co-
dependencies are found between pairs of modules in all types of systems—e.g., 
client/server, peer-to-peer—in component-based systems the detailed specification of 
standard interfaces enables a key benefit of component-based software engineering: the 
ability of components to be easily “swapped out” or substituted/replaced (at the 
architectural level) by other components with comparable functionality and the same 
standard interfaces.23 In terms of software development life cycle, any given component 
can be developed and delivered independently of the release of all other components in 
the system.24 

• Encapsulation and abstraction:25 Because components are addressable only through 
their explicit interfaces, they can be seen as (1) hiding the details of their internal 
implementations; in practical implementation, this form of information hiding is known 
as encapsulation; (2) abstracting the component by limiting the information revealed 
about it to what is conveyed in the component’s interfaces. Both encapsulation and 
abstraction simplify the component’s external representation, limiting it to only the 
information a developer needs to produce another component that can interact 
successfully with the first. In essence, then, components can be seen as “black boxes”.26 

Component developers often build their components in accordance with a predefined component 
model.27 This model defines all of the standard interfaces the component will need to function, 
and their associated contractual obligations. By building the component to this model, developers 
can work in isolation yet be fairly certain the components they produce will be able to interact 
with other components built according to the same model. The component model, then, provides 
a kind of standard template that specify the standards and conventions under which components 
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are to be designed and implemented, thereby reducing the chance of assumption mismatches 
between components built to the model. Compliance with a standard component model is one of 
the features that distinguishes a component from other types of packaged software.  

Interactions among pairs of components can be viewed in terms of provision and consumption of 
services (that is, with one component acting as “server” and the other as “client”, with the 
possibility of the components interchanging roles as needed)28 in accordance with the specified 
interfaces and obligations defined for each component.29 

2.4. COMPONENT-BASED SYSTEM 

A component-based system is a system in which components are integrated together using their 
built-in interfaces to collectively provide a specified set of system services or functions. 
Component-based systems share several characteristics with SoS:30 

1. Operational Independence of the Elements: The SoS is composed of systems which 
are independent and useful in their own right. If the SoS were to be disassembled into its 
component systems, those components would be able to usefully operate independently. 
While individual components in a component-based system may not provide as extensive 
a set of functions as systems within a SoS, like those systems, components can be 
independently functional, even if that functionality is limited and may not be particularly 
useful on its own. 

2. Evolutionary Development: The SoS does not appear fully formed. Its development and 
existence is evolutionary with functions and purposes added, removed, and modified 
based on lessons learned during its development and use. Component-based systems 
share this characteristic to some extent, because the vast majority of such systems are 
built, at least in part, from non-developmental components, each of which has its own 
development life cycle and release schedule. Moreover, an innate characteristic of a 
component is its ability to be replaced at any time by a different functionally comparable 
component. These aspects of components render most component-based system 
developments at least somewhat evolutionary. 

3. Emergent Behavior: The system performs functions and carries out purposes that do not 
reside in any single component of the SoS. These behaviors are emergent properties of 
the system-of-systems. The principal purposes of the systems-of-systems are fulfilled by 
these behaviors. It is because these emergent behaviors may have safety or security 
implications or impacts that their behaviors in the assemble system need to be predicted, 
assessed, and if necessary constrained to mitigate risk to the greatest extent possible. 

A significant difference between a component-based system and a SoS is that the presence of 
compatible built-in interfaces cannot be presumed in the systems from which a SoS is composed, 
while such interfaces can be presumed in components that have been successfully assembled into 
a component-based system. In an SoS, various gateways, frontends, and other workarounds are 
often necessary to enable two independently developed systems to interoperate to the extent 
required by the SoS requirements. 
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2.5. SAFETY 

MIL-STD-882D defines safety as: “Freedom from those conditions that can cause death, injury, 
occupational illness, damage to or loss of equipment or property, or damage to the environment”. 
Such a “condition” is termed a hazard, which is defined “Any real or potential condition that can 
cause injury, illness, or death to personnel; damage to or loss of a system, equipment or property; 
or damage to the environment.” A hazard, if realized, results in a mishap, which is defined as 
“An unplanned event or series of events resulting in death, injury, occupational illness, damage 
to or loss of equipment or property, or damage to the environment.”  

MIL-STD-882D defines system safety as “the application of engineering and management 
principles, criteria and techniques to achieve acceptable mishap risk within the constraints of 
operational effectiveness, time and cost throughout the system’s life cycle.” The NAVSEA 
Weapon System Safety Guidelines Handbook defines31 software safety as “the process that is 
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applied to ensure that the software will execute in the system context and operational 
environment with an acceptable level of safety mishap risk.”  

As Desmond Meacham has observed,32 these definitions are based on the assumption that system 
and software safety rely on the processes by which the system and software are developed; that 
is, that safety must be part of the design of the system. System safety engineering focuses on 
early identification and analysis of hazards at the system level and root causes of those hazards at 
the software level. These analyses enable the system developer to mitigate those hazards and root 
causes through the system design. This is no less true when the design process includes the 
specification of a component-based architectural design. 

Nancy Leveson has acknowledged that absolute “freedom from those conditions that can cause 
death, injury, occupational illness, damage to or loss of equipment or property, or damage to the 
environment” is not achievable for complex real-world systems, although absolute safety should 
always be the goal starting point from which judgments about acceptable levels of mishap risk 
are made. As a system property, safety has a contribution from software in software-intensive 
systems. While software itself is an abstraction, and thus has no substance and cannot directly 
harm people, property, or the environment—it is the nature of the software’s sensing and control 
of physical components within a system and its environment that render that system safe or not. 
Safety of software, then, depends on the combined interactions of the software with hardware, 
system operator, and external factors. Leveson’s definition of software system safety, while 
consistent with the NAVSEA definition of software safety, is more explicit about this 
dependency: “Software System Safety implies that the software will execute within a system 
context without contributing to hazards”.33 

2.6. SECURITY 

Enhancing the Development Life Cycle to Produce Secure Software34 defines security as it 
pertains to software and software-based systems as follows:  

“To be considered secure, software must exhibit three properties: (1) Dependability: 
Dependable software executes predictably and operates correctly under all conditions, 
including hostile conditions, including when the software comes under attack or runs on 
a malicious host;35 (2) Trustworthiness: Trustworthy software contains few if any 
vulnerabilities or weaknesses that can be intentionally exploited to subvert or sabotage 
the software’s dependability. In addition, to be considered trustworthy, the software must 
contain no malicious logic that causes it to behave in a malicious manner; (3) 
Survivability (also referred to as “Resilience”): Survivable—or resilient—software is 
software that is resilient enough to (1) either resist (i.e., protect itself against) or tolerate 
(i.e., continue operating dependably in spite of) most known attacks plus as many novel 
attacks as possible, and (2) recover as quickly as possible, and with as little damage as 
possible, from those attacks that it can neither resist nor tolerate.”  

The security counterpart to a safety hazard is termed a risk; the causal agent of a risk is termed a 
threat, and the mode through which that agent operates is termed an attack.  
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What is targeted by an attack is a weakness which, if it can be intentionally used—exploited—by 
the attacker to achieve his objectives, is termed a vulnerability; as its name implies, an attack that 
has the express purpose of exploiting a vulnerability is termed an exploit.  

The outcome of a successful attack, which is the security counterpart of a safety mishap, is 
referred to as a compromise. There are several types of possible compromise, some of which can 
exist simultaneously: 

• subversion in which the system’s functionality is altered or co-opted  by the attacker to 
achieve certain objective(s); 

• sabotage, usually referred to as denial of service, in which intentional action(s) is 
undertaken to interrupt or disrupt either the system’s ability to operate dependably, or the 
ability of its users to access its functions; 

• intrusion or penetration (implying forced entry) in which the attacker gains access to the 
system’s functions, resources, or data that would otherwise be denied to him/her; 

• violation, in which a security policy predefined for and enforced by the system is broken, 
or a security control within the system is breached or bypassed. 

2.6.1. Safety-Impacting Security Risk 

Safety-impacting security risks are those security risks that, if realized, introduce safety hazards 
to a system. Specifically, safety-impacting security risks are risks to the integrity and availability 
properties of the system.  

Integrity is the security property closely linked to dependability and trustworthiness: the system’s 
dependability relies on it remaining intact, and not being altered unexpectedly, either 
accidentally or intentionally or by an unauthorized party or in an unauthorized way. The 
system’s trustworthiness relies on it not being altered in ways that introduce vulnerabilities or 
malicious logic. The reason integrity is important, then, is that unauthorized and unexpected 
modifications can not only impede the system’s ability to operate dependably, but can render the 
system vulnerable to additional compromises, and/or can add unauthorized functions. In all 
cases, such alterations also renders incorrect all assumptions under which the system operates—
assumptions based on painstaking analysis and testing of the system prior to its deployment. 
Assurance of system integrity, then, is assurance of system intactness and the correctness of 
assumptions about the system.  

Availability is another security property closely linked to system dependability. To be considered 
available, the system must be operational and accessible by its intended users to the extent 
specified in its requirements (e.g., 99% of the time, 95% of the time, etc.). Availability is similar 
to “required uptime” and “quality of service”, except that it addresses not only the system’s 
continuity of operation but also the continuity of access to the system by those that require it. 
The main threat to availability is denial of service.  
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It is impossible for the safety of a system to be assured unless these two security properties can 
be assured against intentional compromise. This is why the system must be able to avoid, resist, 
or withstand threats to its integrity and availability, and errors and weaknesses that make the 
system vulnerable to such threats must be eliminated or mitigated sufficiently, as part of the 
overall safety engineering of the system. 
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3. COMPONENT-BASED SYSTEM DEVELOPMENT 

While COTS components have been widely expected to provide significant cost savings, 
this has not always proved to be the case. Hidden costs include market research that must 
be conducted to find suitable components, extensive component evaluation and testing, 
licensing problems, and costs due to continual changes and upgrading of commercial 
components…. On the operating system level [as an example], fundamental issues must 
be addressed at the evaluation stage of system development, including access to source 
code, choice of a real-time operating system versus non-real-time operating system, and 
operating system functionality. Once an operating system is chosen, it may even be 
necessary to tailor it or otherwise protect against unwanted extra functionality. 
Development of a fault-tolerant architecture could provide an extra level of reliability 
and safety for safety-critical applications.36 

Assembly of components into composed systems can be greatly aided by use of an architectural 
component framework. A component framework is an implementation of services that support or 
enforce a component model. The component model will also define how components are to be 
bound to the resources, or services, provided by the component framework other by other 
components in that framework. A component framework can be seen as a kind of “mini-
operating system” in which components are assembled together, with the framework’s set of 
services in some cases augmenting those provided by the components within the framework, and 
in other cases facilitating the consumer-provider interactions between components.37 The 
integration of components within a framework is commonly referred to as composition or 
assembly. The component model used to develop the component may specify how components 
are to interact directly with each other, how they are to interact within a component framework, 
or both.  

Because properties such as safety and security are not intrinsic to individual components in 
isolation—these properties emerge from the interactions between components or the interactions 
between a component and its environment or a human user—individual component testing and 
analysis (e.g., through static and dynamic analysis, fault injection, fuzzing, etc.) can only provide 
incomplete and indirect evidence of how the component might behave when interoperating with 
other components within a component-based system. Emergent properties can only be 
demonstrated through testing that involves component interactions, e.g., pair-wise component 
testing and testing of whole component assemblies. 

Received wisdom suggests that a particular safety or security property will hold true in a 
composed system as long as its individual components satisfy that property.38 Because of this 
view, it is also commonly believed that the properties of the composed system are necessarily 
derived from the safety and security properties of its least safe and least secure components. In 
reality, it is not necessary for the least robust components to dictate the safety and security 
properties of the composed system as a whole. Component assembly techniques, such as virtual 
machine (VM) “sandboxing” of unsafe/non-secure components during system operation, can be 
used to isolate less trustworthy components and prevent their flaws from impacting the safe and 
secure operation of the system overall.  
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For example, if one component suffers from a buffer overrun while a second maintains safe array 
bounds, the flawed component can be isolated and contained through use of fine-grained, 
intricate component assembly techniques. One such technique is the implementation of a small 
module that associates the system’s sandboxing techniques with the individual interfaces 
between interacting components—these interactions being manifested by the nature of those 
components’ inputs and outputs. The enhanced sandboxing capability would be used to isolate 
the execution of the components whose interfaces have sandboxing associated with them. 

Further, use of autonomic and biologically-inspired survivability techniques (see Appendix C) 
can help ensure that the converse of “common wisdom” is true, i.e., that the system as a whole is 
not only more robust than its weakest component, but is even stronger than its strongest 
component.39 

Trustworthy and untrustworthy components are arranged, and controls and countermeasures to 
safety hazards and security risks posed by the untrustworthy components are added, so that the 
components can all interoperate with confidence that the system as a whole can operate safely 
and securely.  

NOTE: This document presumes a close dependency between security of a component or 
system and the ability of that component or system to be deemed safe.40 “Security” in this 
context refers to the behavior of the software itself, not its ability to protect information. 
To be secure, software must be (1) dependable—correct and predictable in its operation, 
(2) trustworthy—non-malicious, and not vulnerable to subversion or sabotage of its 
operation, and(3) survivable—able to tolerate intentional attempts at 
subversion/sabotage as well as unintentional faults. Non-secure software is inherently 
unpredictable in its behavior due to either (1) the inclusion of malicious logic which, if 
executed, will cause the software to perform unexpected, destructive function(s), or (2) 
the presence of vulnerabilities that, if exploited, will cause the software to behave in ways 
it is not expected to. In either case, this unpredictability renders the component unsafe.  

There are standard and commodity frameworks for software component models such as Eclipse, 
Java EE, and .NET, as well as earlier framework technologies such as CORBA and DCOM.41 
These frameworks, however, are all limited to the specification and matching of structural 
interface definitions. Interface description languages (IDLs) enable the expression of the 
syntactic structure of each interface, including its attributes, operations, and events. To publish 
the safety and security properties of a component, the component’s interface description would 
have to be extended beyond the operations and attributes that constitute its functionalities to also 
express the constraints that must be enforced for those operations and attributes, and their 
associated functionalities, to manifest safely and securely.  
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3.1. COMPONENT EVALUATION AND SELECTION 

If reused software components do not already implement the requirements resulting from 
the safety contract, it is unlikely that the safety team will be able to affect the design 
sufficiently to adequately mitigate the associated risk. However, it is possible to specify 
certain attributes of components... assuming that there are multiple components available 
from which to select. The safety team can specify those attributes required to maintain an 
acceptable level of risk in the interaction of a component or system in the new system. If 
there are available components or packages that have those attributes and also achieve 
the attributes required by the other “ilities,” the designers can incorporate those into the 
resultant system. However, it is difficult to anticipate what attributes a system may 
require when the system is undefined. This occurs during the development of a library of 
reusable components when no system is under development.42 

The following considerations should inform the identification and evaluation of components to 
be used in the assembled system.43 Given the need to choose between two or more 
interchangeable components, these considerations should also inform the determination of which 
is best suited for use in the system: 

1. Identifying the functional, safety, and security design constraints that should be used to 
narrow the range of possible components to be evaluated; 

2. Selecting a methodology by which the design tradeoffs can be quantified so that a 
measure of a given component’s fitness for safe, secure use can be determined; 

3. Determining, through various analyses and tests, which components best satisfy the 
requirements of their intended role in the composed system; 
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4. Determining, through various analyses and tests, which components exhibit the most 
consistently dependable, trustworthy behavior when combined with other components; 

5. Selecting the components to be used in the application. 

Before component assessment can begin, a set of criteria against which the components are to be 
assessed needs to be established.44 These criteria may include product criteria, for assessing the 
components themselves, as well as process criteria, for assessing the processes used to develop 
the components (when such information is available). The product assessment criteria should 
include the following considerations: 

• Product acceptance: Known safety and security properties and issues may be revealed 
by pre-existing evidence available about other organizations’ experiences using the 
component in similar/comparable systems, in published product evaluations, in safety or 
security incident reports involving the product, in vulnerability and malicious code 
reports for the product, etc.  

• Constraints and invariants: To assess the safety and security impact of any 
preconditions, post-conditions, and other constraints and invariants under which the 
component is required to operate, e.g., imposed by performance requirements, safety and 
security requirements, execution environment specifications, etc. 

• Behavior: Examples of component behavior can be derived from design documentation, 
test results, documented past experiences using the product, and direct observation. A 
behavior assessment should consider all known and assumed constraints and invariants, 
to understand the conditions under which the product is expected to operate (in the case 
of design document review), and the conditions under which it was operating when the 
behaviors were observed (in the case of test results and past experience reviews). 

• Design: Evaluation of documented dependencies, interface specifications, test cases, 
proofs of safety/security properties (if any), proofs of preconditions, post-conditions, 
invariants 

• Extensibility: Built-in mechanisms available for adding logic, redefining/modifying 
logic. 

The process assessment criteria should include the following considerations: 

• Methodology: Was a known good methodology used to develop the component, e.g., 
Rational Unified Process, Trusted Software Process (Carnegie Mellon University 
Software Engineering Institute), Security Development Lifecycle (Microsoft)? In some 
cases, this information can be discovered by simply asking the suppliers. In other cases, 
such as Microsoft’s use of its Security Development Lifecycle methodology, the 
company has published extensively on the content of the methodology, and on which 
Microsoft products are developed using that method, and which are not. 
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• Process Standard Certification: Is the development organization certified against a 
relevant process quality, safety, or security standard, e.g., CMMI, SSE-CMM, ISO 9003? 

• Reputation: Is the development organization recognized as a trustworthy supplier of 
safety-critical and/or security-critical software? 

• Incident Response: Has the development organization previously released software 
known to have been directly involved in a significant safety mishap or security incidents? 
What measures were taken by the development organization to prevent a recurrence? 

Evaluation of an non-developmental component’s safety and security properties is best 
accomplished in stages: first, an initial assessment to disqualify obviously-unsuitable 
components, followed by in-depth hazard, threat, and risk assessments of the “down-selected” 
shortlist of components. Pre-selection evaluation of candidate components should not only 
confirm that the component does what it will be required to do when assembled into the system, 
but must also confirm that the component will not introduce potential hazards or vulnerabilities 
to the system. 

As much pre-existing evidence as possible should be gathered in support of the initial assessment 
of component fitness-for-use in the intended system.45 Such evidence should include at least one, 
and ideally more than one, of the following: 

• Results of direct tests, including safety and security tests, of the component; 

• Results of analyses of the component and its development process; 

• Documented experience with the component in other similar/comparable systems; 

• “Trusted third party” evidence, such as independent quality, safety, or security 
certifications of the component and its development process. Examples: results of IEC 
61508 assessments, Common Criteria evaluations reports, etc. 

It is likely that the initial component assessment can be based predominantly, if not exclusively, 
on a safety/security evidence review, with direct analysis and testing limited to those components 
that appear to be the best candidates for fulfilling certain roles in the system. However, when 
there is insufficient or inadequate pre-existing evidence available for even an initial fitness 
assessment of the component, it will be necessary to produce additional evidence through testing 
and analysis. Techniques for direct component analysis and testing are described in Section 7. 
Note that the more critical the safety and security imperatives of the system, the more likely 
additional assessments and tests will be needed. Also, such tests greatly increase the cost of 
using NDI components; such costs may in fact exceed the cost of custom-developing 
components that are designed from the outset to comply with all relevant engineering, safety, and 
security requirements.46 

The results of all analyses of pre-existing evidence as well as any additional direct analyses or 
tests, must be evaluated to determine whether evidence gathered provides a sufficient basis on 
which to determine the component’s fitness for use, and to make the necessary risk management 
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decisions regarding additional controls and countermeasures that may be needed to mitigate any 
non-resolvable safety or security issues presented by use of the component. 
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3.2. PREPARING COMPONENTS FOR ASSEMBLY 

Untrustworthy components may need to be prepared for assembly into a composed application 
through reconfiguration, modification, or wrapping. To determine whether such modifications 
are needed, the engineer needs to determine which component features must be available, which 
features must be disabled or blocked, and which components need to be prevented from 
interfacing with one or more other components, and how that prevention can occur (e.g., through 
VM or trusted processor module [TPM] isolation of either or both of the components, blocking 
of outputs from or inputs to one or both, etc.). 

3.2.1. Custom-Developed Elements for Component-Based Systems 

As noted above, component-based system development shifts the developer’s efforts away from 
custom coding of software components to custom coding of controls and countermeasures that 
will mitigate the hazards and risks posed by less trustworthy and untrustworthy COTS and NDI 
software components. In addition, it may be necessary to write “glue code” for those components 
that don’t contain their own “plug-and-play” interfaces (these are not strictly “components” in 
the component-based engineering sense—but it is highly unlikely that enough “plug-and-play” 
components exist to safely provide the functionality required in a safety-critical system or a high-
confidence security-critical system.  

Custom development for component-based systems may include: 

• “Add-on” logic to add functionality to, or modify the “out of the box” functionality of, a 
COTS/NDI component; 

• Entire components needed to perform functions that cannot be performed by any 
COTS/NDI component, either due to obscurity of the functionality or lack of sufficiently 
safe/secure options among COTS/NDI components; 

• Interface software to enable components to support standard interface technologies not 
supported “out of the box”, or to map proprietary interfaces of legacy components to 
standard interfaces. Such interface software may include custom-developed APIs, 
proxies, gateways, filters, applets, and scripts; 

• Safety and security controls and countermeasures (e.g., input validation modules, 
wrappers, proxies, etc.).47 It should be possible to determine the need for such 
controls/countermeasures by observing (through analysis and testing, as described in 
Section 6) components from their unsafe/non-secure behaviors in response to inputs and 
the dangerous nature of their outputs, and to estimate the impact of such behaviors and 
dangerous outputs on whole system’s behavior (in terms of its safe and secure operation). 
The effectiveness of controls/countermeasures should be sufficient to minimize such 
estimated impact to an acceptable level. 
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3.4. COMPONENT ASSEMBLY ARCHITECTURE 

In most systems, the components could be assembled in multiple ways to satisfy the system’s 
functional objectives. However, there will likely be different safety and security, as well as 
performance and usability, effects from one assembly architecture vs. another.  

Key factors that differentiate functionally equivalent assembly architectures are: 

• Quantity of components: Architectures with fewer components are preferable if fewer 
components can be used without significantly increasing the complexity of each 
component. Also note that more components there are, the more complex the analyses 
required to determine not just the behaviors resulting from direct interactions between 
component pairs, but to trace the “chain of events” that may cause a distant upstream 
interaction to eventually impact a remote downstream component’s behavior. Finally, 
depending on the number of untrustworthy components among the total components, the 
number of countermeasures and controls that need to be added to the system to use those 
untrustworthy components safely and securely may multiply significantly. The need to 
analyze and test the system will also increase, both to make sure not only that the many 
component interactions do not threaten safe/secure operation, and that the many 
controls/countermeasures do not interfere with or negate each other’s effects; 

• Complexity of components: This is related to the previous factor: a greater number of 
simple components will be easier to analyze individually, but more complex and time-
consuming to analyze collectively, and to maintain. Code review and testing will 
probably be similar to what is needed for fewer, more complex components, given that 
the same amount of functionality and code needs to be reviewed/tested; 

• Sequence in which components perform their functions: This may also have a bearing 
on the amount of time it takes to achieve an objective for which multiple components’ 
functions are required; 

• Whether components are contiguous: This is of particular concern in terms of exposure 
of trustworthy components to untrustworthy components; 

• Whether a component is exposed, to external users, processes, or other systems; 

• Given multiple components able to perform the same function, which of those 
components will perform that function: For example, in a Web server application, the 
operating system, backend database management system, and Web server application 
may all be capable of authenticating users. However, it is highly unlikely that the system 
will be designed to authenticate the user three times. Instead, a fourth component—a 
single sign-on system—may be added to the architecture to authenticate users on behalf 
of all the other components that require user authentication.   

The best possible assembly architecture will: 
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• minimize, and preferably eliminate any external exposure of untrustworthy components, 
as such components are far more likely to fail as a result of a malicious user or other 
externally-originated input; 

• rely only on trustworthy components to perform critical functions, including functions to 
achieve system fault-tolerance and security; 

• isolate trustworthy components that perform critical functions to prevent any direct 
access to them /interaction with them by untrustworthy components; 

• allow for the interpolation at component “boundaries” of safety and security 
controls/countermeasures (1) between two components, and (2) between components and 
the system’s external interface(s); 

• be the most easily adaptable, i.e., to allow for the direct substitution of existing 
components with new components that have the same standard interfaces and comparable 
functionality, but which may be less trustworthy than the components they replace (thus 
requiring the addition of controls/countermeasures),48 or the replacement of a group of 
components with a group that collectively provides the same functionality (in which case 
major architectural adjustment may be needed). 
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exceptional cases that were not caught by the output validation logic of the upstream component. Performance could 
be improved due to a reduced quantity of unacceptable input sent to the downstream component: an important 
consideration if that component’s operation were more time-critical than that of the upstream component. 
48 By the same token, if the new component is more trustworthy, it may be possible to eliminate a 
control/countermeasure that was required when using the previous, less trustworthy component. 
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4. HAZARDS AND RISKS THAT ARISE FROM 
COMPOSITION 

[T]o use a COTS component with confidence, it is necessary to ensure that, the impact of 
component behaviour on system safety is fully understood and managed. More 
specifically, it should be ensured that the potential failures of the COTS component 
cannot contribute to system level hazards.49 

Ideally, organizations should be able to rely on software developers with the familiarity with the 
safety- and security best-practices to generate all source code and components that will be used 
in the software-intensive system. With this level of control, the development organization would 
be able to ensure safety and security are considered during every phase of software development: 
including requirements, design, implementation, testing and deployment. This would allow the 
organization’s software to perform all of its safety and security functions correctly. 

However, developers are human, and thus inherently imperfect. Even if they are well-versed in 
safe software engineering practices, they are prone to make mistakes, some of which may lead 
directly—or indirectly—to safety or security flaws in the software-intensive system.  

Developers are even more likely to make mistakes under pressure of last-minute addition of 
requirements or unrealistic deadlines. Moreover, lack of emphasis by management or customer 
on all but functional (and perhaps performance) requirements may lead to designs that are 
incomplete in terms of addressing safety and security imperatives.  

Even with safety- and security-oriented software development methodologies and testing 
practices (and sufficient training/education to understand and use them), a developer cannot be 
expected to create software that is completely safe or secure. To this end, organizations have 
begun relying on reuse of existing components with the expectation that these components are 
more robust than their custom developed counterparts. While taking advantage of these 
components will increase the likelihood that the software will be more robust (i.e., it will be 
tested and used by a larger number of users) there is no guarantee that the resulting software-
intensive system will be as safe or secure as its custom-developed counterpart. When composing 
software-intensive system, it is important to keep in mind the number of hazards that can 
introduce risk into the system. 

It is important to note that the hazards associated with software development are not new. The 
Therac-25 radiation therapy machine used in the mid-to-late 1980s was a software-intensive 
component-based system that resulted in the deaths of several individuals due to flaws within the 
system software.50 One of the primary flaws associated with this system was that it relied entirely 
on software to perform safety-critical functions without performing a stringent review of the 
software itself. By re-using software components developed for other devices that incorporated 
hardware fail-safes, the developers of the Therac-25 assumed that the original software was 
sufficient for safety-critical functions. In fact, the developers of the Therac-25 made the 
following assumptions in their safety analysis: 
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1. Programming errors have been reduced by extensive testing on a hardware simulator and 
under field conditions on teletherapy units. Any residual software errors are not included 
in the analysis. 

2. Program software does not degrade due to wear, fatigue, or reproduction process. 

3. Computer execution errors are caused by faulty hardware components and by “soft” 
(random) errors induced by alpha particles and electromagnetic noise. 

While a modern system will assume the existence of residual software errors—and potentially 
those induced by “soft” errors, it is important to realize that invalid assumptions may themselves 
lead to an unsafe or insecure system. 

In particular, the Therac-25 suffered from obscure race conditions in the software input. Some 
failures of the software occurred as a result of the operator typing input faster than the operation 
of the Therac-25, resulting in incorrect dosages to be applied based on the original incorrect 
input. The following sub-sections highlight a number of potential areas in which software 
components may introduce security risks or safety hazards into a multi-component system.51 
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4.1. PARAMETER-PASSING ISSUES 

Most software components require glue- or interface-code to supply certain parameters in order 
to function correctly. In such situations, it is important for the documentation—and the 
component itself—to explicitly identify when it expects input and what format that input should 
be in. However, there is always a possibility that component-based software will result in 
unexpected behavior, resulting in parameters being sent outside of predetermined boundaries. 
For example, components may send input that another component does not expect. There are 
several possible events that could occur: 

• The components disagree on when to interact based on some external condition at run-
time or based on a flawed policy;  

• The specifications regarding a component’s coupling with another component results in 
sending wrong data type;  
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• The sender receives unexpected input and passing it directly to the receiving component; 

• Data is supplied to the wrong component, based on flaws in the sending component 
and/or interface code; 

• Component does not receive input it does expect; 

Conversely, a component may neglect to send input when another component expects input. 
Again, there are several possible events that could occur: 

• A component “hangs” indefinitely while waiting for data to arrive from a second 
component that has crashed. 

• The component expects certain data from another specific component but instead, the 
sender is now being represented by a third component who sends different data than what 
the receiver expects. 

• The sender, based on a false positive, doesn’t send. 

• Sender or receiver not configured to interact with each other. 

In general, most component-based software-intensive systems rely on some form of external 
coupling, where a software component has a dependency on software written by a third party. 
Upon invocation of a software component, problems can arise when the component accepts and 
processes parameterized data not of the length or format expected. The causes for component 
acceptance of bad data include: 

• Component documentation that is unclear as to what data it expects to receive upon 
integration with other components or a larger system.   

• Software developers may assume to know what data to pass based on the functionality of 
the component or based on what previous components of like functionality expected. 

• The invoking software may have converted the data before actually making the 
invocation. However, this behavior might be expected if the programmer failed to re-cast 
the data before invoking the component. 

Sometimes, interaction across more than two components may introduce inconsistencies in the 
system that lead to a loss of data. For example, a component may be unable to receive requested 
input or access service from a second component due to architectural interpolation of a third 
component (or other barrier) that severs the interface between the first component and the second 
component. 

Often, one of the primary components within the system may be a software entity designed to be 
standalone—or to interact only with limited external interfaces (e.g., physical sensors). In such 
cases, the component does not have the necessary interfaces to interact safely/securely with other 
components. Rewriting a standalone computer program such that it can be invoked as a 
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component from a system or other component requires a redesign of variable complexity. That 
complexity will depend on what language the program is written in, the modularity of the 
original design, as well as the goals of the component-based system as a whole.  

The same is true with a computer program that has interfaced with hardware sensors. Here, in 
addition to the work required for a standalone program, the existing interfaces must be replaced 
with software interfaces. This will have to involve a deep analysis of the program’s data flows. 

As always, when integrating standalone components into a larger system, developers must be 
keenly aware of the resource expectations and consumptions of the individual components. If the 
collective expectations/consumptions of all components exceed the available resources, 
performance may be detrimentally affected, which in some safety-critical systems can have 
hazardous results. For this reason, a thorough analysis of component resource requirements vs. 
available resources should be undertaken when hosting multiple components on the same 
physical platform. 

4.2. TIMING AND SEQUENCING ISSUES 

While parameters are an important aspect to ensuring proper communication between 
components, developers must be keenly aware of timing and sequencing issues—particularly in 
real-time and/or distributed environments. With components increasingly being deployed in 
large-scale and small-scale software systems, ensuring the proper timing and sequencing of 
components becomes ever more important. 

With large-scale component-based systems relying on input from one another, there is always the 
potential that one component will retrieve the “wrong data at the right time,” leading to a 
situation where data was retrieved at the appropriate point in execution, but it is incorrect and 
may lead to safety or security defects within the system. For example, a weapon system may rely 
on an external component to provide position information for both aiming the turret and moving 
a targeting camera—with the same formatting supplied for both components. If the turret and 
camera receive the wrong information, it can be expected that the system will not function 
properly. 

Conversely, one component may receive the “right data at the wrong time”. In the turret example 
above, the targeting component may receive the correct data, but only after the weapon has 
received firing orders—causing the turret to fire prior to being positioned. 

Increasingly, with components sharing the same networks, hardware, and interfaces, software 
systems have to deal with the possibility that high-priority functions may be interrupted by low-
priority functions. For example, if a clock component is hosted on the same operating system as 
a targeting component, it is possible that a high number of requests to the clock component may 
cause resource exhaustion of the targeting component—causing the low-priority component to 
adversely affect the high-priority component. Regardless of how the components are deployed 
within the architecture, any architecture that allows multi-threaded execution of shared resources 
may eventually run into some form of race condition and—in so doing—directly impact the 
safety and security of the software intensive system as a whole. 
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4.3. RESOURCE CONFLICTS 

Any architecture that relies on multiple independent components can be susceptible to resource 
deadlocks. In fact, E.G. Coffman identified four preconditions to introducing deadlocks into any 
system:52 

• Mutual exclusion condition: a resource that cannot be used by more than one process at 
a time; 

• Hold and wait condition: processes already holding resources may request new 
resources; 

• No preemption condition: No resource can be forcibly removed from a process holding 
it, resources can be released only by the explicit action of the process; 

• Circular wait condition: two or more processes form a circular chain where each 
process waits for a resource that the next process in the chain holds. 

Removing any one of these conditions will prevent deadlocks from occurring. However, in 
practice, it becomes increasingly complex to address any one of these conditions in a large-scale 
system. To this end, large-scale databases actively monitor for resource deadlocks, forcefully 
resolving them at run-time. 

If the component requesting the resource is authorized to make such a request at the time of the 
request, the resource should be released or shared if the resource’s management algorithm allows 
sharing. If not, the request is queued and waits for the resource to be released.  There are 
operating systems that permit the request to repeatedly ask for the resource until it is released; 
this is called spinning on a lock.  Regardless of what mode a request waits in however, the 
resource must be released eventually; even if the task currently in possession of the resource has 
a high priority.  In such cases, as a high priority task consumes additional time slices, either the 
priority or the length of the time slices is lowered. Still, is it possible for a component to fail to 
release a resource when operating normally. 

When the functionality of a component is critical, the apparent failure of a component to release 
a resource may, in fact, be intended by the component’s designer for safety reasons, i.e., the 
resource is held in order to preempt the processing of any new request from another component.  
For example, suppose a surgeon operating a software-controlled surgical laser has reached the 
phase of an operation at which an operating system-controlled resource in the surgical laser’s 
software system must remain exclusively available to a single specific application throughout the 
next phase of the operation. Through the application’s graphical user interface (GUI), the 
surgeon will instruct the OS to lock the resource, which will cause all attempts by other 
components to access or claim the locked resource to fail. While technically a failure at the 
individual component level—i.e., the requesting component failed to gain access to the requested 
resource—at the system level, this was not a failure at all; It was a resource conflict “by design”: 
the resource was locked intentionally, to prevent a safety hazard that might have escalated into a 
mishap. 
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Another good example of the failure of a reasonable request for service by one component can 
occur when an on-line weapons system has identified an unfriendly target and needs to perform 
the calculation of a targeting position and launch trajectory followed by its weapon’s launch 
sequence, without any interruption between the steps between calculation and launch. Any 
interruption could delay the calculation of target position and launch trajectory, which would 
cause the weapon to aim inaccurately, and not only miss its intended target, but to hit an 
unintended object (possibly causing the unintended casualty of one or more civilians). Were such 
an application multi-threaded, the attempted parallel activities of two or more processes could 
confuse the ability to establish this clear, simple, uninterrupted sequence of events. 

Moreover, it would complicate the ability to determine whether a component’s seemingly 
reasonable request for service was, in fact, maliciously intended (e.g., through coding by a rogue 
developer and/or insertion of a logic bomb or Trojan horse) to cause exactly this type conflict 
that could lead to system failure…and safety mishap. 

4.4. IMPROPER CONFIGURATION ISSUES 

Even with appropriate component parameters, timing and resource allocation, component-based 
architectures must be configured to operate properly within the environment. In fact, one of the 
primary reasons for using COTS/NDI components within a software architecture are that these 
components can be configured to operate in a variety of ways. As such, organizations must 
ensure that the required configurations do not introduce potential safety or security defects into 
the system. 

Of particular concern for security-related defects are the software’s access privileges: 

• Component access privileges set too high: This enables the component to potentially 
interfere with other components it is not intended to interact with, or access data, 
resources, or devices it is not intended to access. 

• Component access privileges set too low: This prevents the component from interacting 
with other components it is supposed to interact with, or accessing data, resources, or 
devices it needs. 

• Component role set incorrectly: Equivalent to setting some access privileges too low 
and others too high. 

Any component that does not have appropriate access privileges may directly affect the safety of 
the system as a whole by introducing the potential for an attacker to inject an intentional safety 
hazard into the system.  In addition, the safe operation of the component may have its own set of 
configuration controls, including: 

• Component fail-safe settings: This determines how the component will behave if certain 
error conditions are satisfied. 
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• Component safety thresholds: This would determine what the safe operating parameters 
for the component are. 

• Component priority: This would determine how the component must behave in concert 
with other aspects of the system (e.g., setting real-time priority within the OS). 

After a thorough safety and security analysis, those fixes and patches that will not detrimentally 
affect the safety (and safety-impacting security) of the system should be applied to the 
component prior to system deployment. To the extent possible, the version of each component 
deployed should reflect its most recent code-base, which is presumed to be that in which the 
most errors, flaws, and vulnerabilities have been remediated by the component’s developers or 
integrators.  

4.5. IMPROPER FUNCTIONALITY ISSUES 

No matter how much discipline and testing a component undergoes, there is always the 
possibility that it may contain an undetected or uncorrected error that may result in an incorrect 
computation. If the component itself, or another component to which it passes the computation 
results, acts on those incorrect results, the result may trigger a fault with safety or safety-
impacting security implications. 

Concerns over improper functionality are not limited to the components themselves, but also to 
their execution environment—an environment level component (hardware sensor, operating 
system process) may malfunction, providing the component with incorrect data which, if the 
component acts on that data, may lead to an error, fault, and ultimately mishap. For example, a 
component that does not validate input from another component at the application or operating 
system level or from a hardware sensor, may inadvertently act upon unvalidated input that turns 
out to be incorrect. As a result, the component may behave in an unexpected, possibly harmful, 
manner.  

There is also the possibility of a component calling a library routine or function that it expects to 
be present in the operating system, only to find that the library/function is unavailable, not 
present, or that an incorrect version has been installed. In any of these cases, the component may 
behave in an anomalous, possibly dangerous, way as a result. 

4.6. INADEQUATE FUNCTIONALITY ISSUES 

In some cases, a component may not have all of the functionality required to adequately perform 
its intended role in the system. For example, the component may be unable to ensure that 
communication between it and another component is properly authenticated, verified and 
validated. The component may also not be able to handle parameters of sufficient precision for 
the software’s operation. In either case, developing to the component’s limitations may lead to 
safety or security defects within the system. Use of functionally deficient components is often 
inspired by desired cost savings. The result is either that the system stakeholders accept a system 
that does not satisfy all of its requirements (or the requirements need to be adjusted). 
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Furthermore, use of inadequate components makes it more difficult to isolate problems that may 
be caused by the inadequate functionality during system operation.  

Alternately, wrappers or externally called mechanisms may be implemented, if possible, to 
augment the deficient component. In some cases, this may be accomplished by locating yet 
another component to fill in the missing functionality. More often, it will require the 
development of custom software—which is exactly what use of the pre-existing component was 
supposed to avoid—thus eliminating the cost savings of using the component. The result, 
whether another component or custom code is added, is a system that is less elegant, more 
complex, and more difficult to analyze and maintain. It is better to use components that meet all 
of their specifications in the first place, as long as those components do not introduce 
unmitigatable hazards or vulnerabilities.  

4.7. UNANTICIPATED EXECUTION OF UNUSED/DORMANT CODE 

NDI components are often designed to provide a large variety of functions, so they can support a 
wide range of user applications. Such components typically provide functions that are not needed 
in the specific system in which they are used. Generally, these unused functions can be disabled 
using configuration mechanisms—or possibly left enabled with the expectation that they will not 
be triggered (called or executed) in the course of the expected operation of the system. Such 
unused, or “dormant”, functionality can, however, be triggered by an unanticipated event, such 
as an unexpected input that is (mis)interpreted by the system as a command. This could result in 
the unanticipated, potentially dangerous, behavior of the system as a whole due to the 
unanticipated execution of a function that was not intended to execute at that time (if ever).   

For example, a large software-intensive system that has a generic installation of a commodity 
operating system may have support for running processes at pre-determined times. In a sensitive 
environment, it is possible that some of the activated processes may interfere with the behavior 
of the system (e.g., modifying files or starving safety-critical functions of resources). 

ADDITIONAL SUGGESTED RESOURCES 

• Rieger, William B., Boeing Defense and Space Group, “Safety Considerations of 
Unused Code: Its Causes and Implications”, in CrossTalk: The Journal of Defense 
Software Engineering, January 1997. 
http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1997/01/saftyconsider.asp 
(accessed 8 April 2010). 

4.8. DATA PROTECTION ISSUES  

When relying on components to process and store data generated within the software-intensive 
system it is important to note that different components may not provide equivalent levels of data 
protection—especially when they are written in different programming languages. For example, 
a component written in the Perl scripting language does not include inherent checks that ensure 
that data being processed is numerical rather than textual (the danger being that a Perl process 
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may fail due to inappropriately-formatted data being accepted by the application). For Perl 
components, such checks would have to be explicitly programmed, whereas comparable 
components written in C or Java would have these sorts of checks built in through their 
implementation language.  

Component interface code that assumes that other components perform certain checks will 
introduce errors into the system when such checks do not occur. For this reason, the developer 
needs to: 

1. determine all of the checks that each component’s interface expects;  

2. determine whether the expected checks are built into all other components with which the 
first component may interact/communicate;  

3. implement wrapper code or another mechanism to add expected checks to any 
components in which they are not already present but may at some point be needed. 

Components may also have different internal requirements for ensuring that the data is valid or 
securely stored. For example, security- or safety-critical data should only be stored in trusted 
locations on the computing platform with appropriate data-level safeguards in place (e.g., file 
permissions, data encryption or digital signatures). Without a process in place for ensuring that 
an individual component performs these required activities and provides the required safeguards, 
it becomes possible for external entities to either inadvertently or maliciously affect the outcome 
of the system by taking advantage of the component’s data protection profile. 

4.9. INHERENT COMPONENT ISSUES 

Finally, it is important for organizations to be aware of security or safety issues that may 
inherently exist within the component itself. We mention these briefly to aid the developer in 
defining criteria for selection of components. 

• A component may contain malicious logic that affects its interactions with other 
components.  

• A component may contain faulty logic that affects its interactions with other components. 

• The assembly architecture for the system may expose the component’s weaknesses to 
access by other components, system- or middleware-level entities, or human users. 

In each of these cases, once the components are assembled, it will be difficult to isolate the root 
cause of any unsafe or non-secure behavior or fault down to the individual component level. For 
this reason, it is important that the individual components’ behaviors and vulnerabilities all be 
well-understood before assembly begins. This understanding can be gained through individual 
component testing and analysis, to identify errors, anomalous or malicious logic, and exploitable 
vulnerabilities.  
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The level of analysis/testing performed should be commensurate with the level of assurance 
desired that the component behaves safely and securely in and of itself (i.e., when not interacting 
with other components, as single-component testing/analysis will not demonstrate this). The 
level of assurance should reflect the quantity and intensity of safety hazards (determined through 
hazard analysis) and security risks (determined through threat modeling) to which the component 
(and system) is expected to be exposed on the one hand, and the safety criticality of the system 
on the other. The more safety critical the system, the more assurance will be needed that its 
components will not compromise that safety. Similarly, the more hazards/threats to which the 
component is expected to be exposed, the greater the assurance needed that those hazards/threats 
will not compromise its safe operation.  

As with any testing process, it is infeasible to develop tests that will guarantee the security of 
safety of the component.  Nevertheless, organizations should determine what level of assurance 
is necessary when performing an analysis of individual components.  After each component is 
deemed internally sound, pairs of components that will interact during system operation should 
be tested, then larger combinations, until ultimately the whole system is tested, with each 
component’s behavior within the system both fully exercised and carefully monitored to ensure 
that component-level logic errors, malicious behaviors, or vulnerabilities are identified (as early 
in the development life cycle as possible) and mitigated prior to deployment of the system as a 
whole. 

ADDITIONAL SUGGESTED RESOURCES 

• Lipson, Howard F., Nancy R. Mead, and Andrew P. Moore, CMU SEI, “Can We Ever 
Build Survivable Systems from COTS Components?”, Technical Note CMU/SEI-
2001-TN-030, December 2001. http://www.cert.org/archive/pdf/01tn030.pdf 
(accessed 14 January 2010). 

• Voas, Jeffrey, “Mitigating the Potential for Damage Caused by COTS and Third-Party 
Software Failures”, in Proceedings of the 15th International Conference and 
Exposition on Testing Computer Software, Washington, DC, 12-18 June 1998 
http://www.cigital.com/papers/download/ven.pdf  

• Voas, Jeffrey, F. Charron, and Keith Miller, “Tolerant Software Interfaces: Can 
COTS-based Systems be Trusted Without Them?” in Proceedings of the 15th Int’l. 
Conference on Computer Safety, Reliability, and Security, Vienna, Austria, October 
1996. http://www.cigital.com/papers/download/safecomp96.pdf (accessed 31 March 
2010). 

• Voas, Jeffrey, Anup Ghosh, Gary McGraw, and Keith Miller, “Glueing Together 
Software Components: How Good is Your Glue?” in Proceedings of Pacific 
Northwest Software Quality Conference, Portland, OR, October 1996. 
http://www.cigital.com/papers/download/pnsqc96.pdf (accessed 31 March 2010). 
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49 Ye, Fan, and Tim Kelly, University of York, “Contract-Based Justification for COTS Component within Safety-
Critical Applications”, in Proceedings of the the 9th Australian Workshop on Safety RelatedProgrammable Systems, 
Brisbane, Australia, October 2004. http://www.acs.org.au/documents/public/crpit/CRPITV47Ye.pdf (accessed 12 
March 2010). 
50 Leveson, Nancy G., and Turner, Clark, “An Investigation of the Therac-25 Accidents”, in IEEE Computer, 
Volume 26, Number 7, July 1993, pages 18-41. http://cs.ucla.edu/~kohler/class/05f-
osp/ref/leveson93investigation.pdf (accessed 18 December 2009). 
51 Section 5 of COTS Hardware and Software for Train Control Applications elaborates on safety considerations 
discussed here specifically as they pertain to COTS operating systems. Op. cit. Clough/Federal Railroad 
Administration. 
52 Coffman, Jr., E.G., et al., “System Deadlocks”, in Computing Surveys, Volume 3, Number. 2, June 1971, pp. 67-
78. 
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5. MODELING AND PREDICTIVE ANALYSIS OF HAZARDS 
AND RISKS THAT EMERGE FROM COMPOSITION 

There is debate within the software engineering community over the merits or otherwise 
of inferring the quality of fielded software code from the quality of the people, processes, 
and tools that an organization uses to develop software products. It is generally accepted 
that whilst quality processes are a necessary enabler to produce quality code, processes 
alone are not a guarantee of quality code. It is for this reason, that the bulk of software 
processes for safety-critical software are in fact the software product verification 
processes that include a wide range of activities from requirements verification through 
unit testing to final qualification testing. Given the practical impossibility of performing 
exhaustive testing, an important consideration for the verification of safety-critical 
software is the measure of coverage that is provided by the verification effort. The 
quantity and type of verification that is performed on software will determine the level of 
assurance that can be ascribed to the fielded product.53  

When planning to introduce components into an architecture, organizations can use a number of 
tools and methods to determine—ahead of time—the likely hazards and risks that will emerge in 
the overall system once multiple components are incorporated into a single system.  

Evaluators, analysts, and testers of software components and component-based systems may find 
the information and descriptions of tools capabilities in the NAVSEA NOSSA Software Security 
Assessment Tools Review54 of help in planning of analyses and tests and identification of 
appropriate tools to support those analyses/tests. 

ADDITIONAL SUGGESTED RESOURCES 

• Esker, Linda J., “Gaining Early Insight Into Software Safety: Measures of Potential 
Problems and Risks”, presented at the 19th Systems and Software Technology 
Conference, Tampa Bay, FL, 18-21 June 2007. http://sstc-
online.org/2007/pdfs/LJE1669.pdf (accessed 8 April 2010). 

5.1. TECHNIQUES AND TOOLS FOR MODELING, SIMULATION, AND 
ANALYSIS IN AID OF HAZARD, RISK, AND VULNERABILITY 

PREDICTION 

Developers of safety- and security-critical systems often use a number of modeling and 
simulation tools to simulate and observe the types of unsafe behaviors that might be encountered 
in a production system. Balestrini-Robinson et al. suggest that agent-based models are the best 
suited for modeling intercomponent interactions and dynamic and emergent behaviors of 
components in complex systems. They warn, however, that of all modeling techniques, agent-
based models are the most difficult to implement and validate.55 McDermott, et al., have 
described the benefits of using the Air Force Modeling and Simulation Training Toolkit 
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(AFMSTT) for modeling and simulation (M&S) of SoS;56 the advantages they describe may also 
hold true when using the AFMSTT for M&S of large, complex component-based systems. 

Binary fault injection and source code fault injection tools can provide insight into how the 
software will function in certain scenarios, the results of which can directly be applied to a safety 
and security assurance case.57 In addition, organizations can use a number of simulation tools to 
provide a realistic run-time environment in which different scenarios can be played out, showing 
how well the system and its individual components behave in a hostile or hazardous 
environment. 

As noted in the DOD Joint Software Systems Safety Engineering Handbook: 

Modeling and simulation are often the only means available to analyze the interaction of 
components in a system.... The models and simulators must possess a sufficient pedigree 
and proven accuracy to allow the safety team to achieve their objectives. The models and 
simulators must also be accurate enough to react in the same manner as the actual 
component or system. The models and simulators, because they are used to validate 
safety, must be classified as safety-critical themselves and be under configuration 
control, and ultimately a deliverable. 

Safety code reviews and formal methods can also be useful for verifying the safety and security 
of individual components. Safety and security code reviews differ from traditional code reviews 
in that their goal is not simply to find errors or defects within the software. Instead, the goals of a 
safety and security code review are to identify the safety-critical and safety-impacting security 
functions and parameters of the software and ensure they satisfy the requirements that specify 
how the software should prevent and respond to safety hazards and security errors during 
runtime.58 As such, a code review clarifies whether the software satisfies its requirements for 
each safety-relevant and safety-impacting security-relevant parameter and function. The specific 
techniques for such reviews are static and dynamic code analysis. These are discussed further in 
Section 7.3.  

Formal methods provide a means by which assurance of software safety can be extrapolated 
from the mathematical proof of the formally (i.e., mathematically) specified requirements for the 
software and a formally-specified model of the software as it would operate if implemented 
correctly and in strict conformance with its formal specification. 

Also helpful may be the analysis of indirect evidence of a component’s “goodness”. Such 
evidence will demonstrate, for example that the component was developed by a highly-regarded, 
trustworthy software vendor (i.e., “good” pedigree), that the component has not been tampered 
with or corrupted over its life time (i.e., “good” provenance), that the component has attained 
relevant safety or security certifications, that the component conforms with certain standards, etc. 
None of this evidence on its own proves that the component is safe or secure; it can, however, tip 
the scale in favor of trusting a component whose safety/security cannot be adequately determined 
from direct analysis alone. 
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Developers of security-critical systems may also rely on risk/threat modeling and analysis tools 
to provide an understanding of the threats that may directly affect the system. These tools allow 
for the modeling and identification of threats.  

According to Donald Firesmith,59 safety risk analysis is performed using one of four techniques, 
captured in Table 5-1. These techniques are similar to those defined by Firesmith for performing 
security risk analysis, which are also captured alongside their safety risk analysis counterparts, in 
Table 5-1. 

Table 5-1. Safety Risk Analysis compared with Security Risk Analysis 

Technique Safety analysis connotation Security analysis connotation 

Asset analysis  Determine which assets are 
valuable to legitimate stakeholders 
and how valuable they are. 

Determine the assets that are 
sufficiently valuable to legitimate 
stakeholders to be worth protecting 
from attackers. 

Harm analysis Determine the credible types and 
severities of the accidental harm 
that can occur to these assets, 
whereby harm severities are 
typically categories of the 
magnitude of harm. 

Determine the types and severities of 
the malicious harm that can occur to 
these assets so that the level of 
investment in security 
countermeasures will be 
commensurate with the value of the 
assets being protected. 

Incident analysis  Determine the kinds of accidents 
that can cause harm to the assets 
as well as the kinds of near misses 
that need to be addressed. 

Determine the kinds of security 
attacks that could cause malicious 
harm as well as the kinds of probes 
to be addressed. 

Hazard analysis Determine the hazards (i.e., 
hazardous conditions) that can lead 
to safety incidents as well as their 
causes and consequences. 

 

Threat analysis   Determine the threats (i.e., 
threatening conditions) that can lead 
to security incidents. Because 
security involves attacks, these 
threats can be considered to be the 
existence of attackers with specific 
profiles (e.g., means, motive, and 
opportunity) or the proactive tools of 
their trade (e.g., viruses and worms). 
Misuse and abuse cases can be 
useful tools as part of threat analysis, 
as can threat models, attack trees, 
and/or attack graphs. 

Risk analysis  Categorize the security incidents and 
threats by levels of security risk, 
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such as intolerable, undesirable, as 
low as reasonably practical (ALARP), 
and acceptable. 

 

By merging each of these techniques, organizations can develop a streamlined safety and 
security risk analysis process. In particular, the asset and harm analysis steps of both types of 
analysis are complementary—as any security defects within a safety critical system necessarily 
become safety hazards.  

In 2002, Arslan Brömme60 identified several different types of hazard analysis that organizations 
may take advantage of. Of note, each of these has a security risk analysis counterpart: 

• Preliminary Hazard Analysis (PHA), 

• System Hazard Analysis (SHA), 
• Subsystem Hazard Analysis (SSHA), 

• Software Hazard Analysis (SHA), 
• Operating Hazard Analysis (OHA), 

• Maintenance Hazard Analysis (MHA), 
• Fault Hazard Analysis (FHA). 

Each of these hazard analyses can be performed in concert with a risk analysis at the associated 
level. For example, organizations can categorize the risks facing an application into several 
different families based on the type of hazard analysis performed: preliminary analysis, system-
level analysis, software-level analysis, operating and maintenance analysis and analysis of 
intentional faults that may be induced by an attacker. 

ADDITIONAL SUGGESTED RESOURCES 

• Dahll, Gustav, Organisation for Economic Co-operation and Development, 
“Combining disparate sources of information in the safety assessment of software-
based systems”, in Nuclear Engineering and Design, Volume 195 Issue 3, 2 
February 2000, pages 307-319. 

5.1.1. FMEA, FMECA, and Hazard Analysis for Component-Based 
Software 

As noted in the Joint Software Systems Safety Engineering Handbook, because software has no 
physical failure modes, Failure Modes and Effects Analysis (FMEA), Failure Mode, Effects, and 
Criticality Analysis (FMECA),61 and related analyses can be difficult to apply to software-
intensive systems. This said, software does have functions that can be implemented incorrectly, 
operate erroneously, or fail to operate at all for various reasons. For component-based software, 
FMEA/FMECA that strives to identify the causes and potential severity (or criticality, in 
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FMECA parlance) of failures of software functions needs to consider not just errors within 
individual software components, but errors that may arise from “mismatches”, such as expected-
but-not-received, unexpected, or incorrectly-formatted input from or output to other components.  

Hazards are best identified at the system or subsystem level. In the case of component-based 
software systems, hazards will begin to emerge as multiple software components interact with 
each other and with the system’s hardware components. Researchers at the Advanced Physics 
Laboratory of Johns Hopkins University developed an extended version of existing FMEA and 
FMECA methodologies to specifically address hazard severity analysis for SoS interfaces.62 The 
new methodology, Interface FMECA (iFMECA) enables engineers to perform a risk-based 
prioritization of interfaces in SoS, and could be applied to intercomponent interfaces in 
component-based systems. 

Code review is useful for revealing coding errors (e.g., syntax errors, exceeding array 
boundaries, etc.) in individual components. Code review can also reveal causal factors that 
contribute to hazards that were identified during hazard analysis. In analyzing component-based 
software code, particular attention should be paid to identifying errors at the component’s 
interface boundaries. Pair-wise analyses should also be performed to ensure that the interface 
code of one component matches the expectations of the interface code of the second component 
with which it interacts. Such analyses should also look for explicit input validation code 
associated with each interface, to ensure that input received from other components is always 
checked before use by that component. 

ADDITIONAL SUGGESTED RESOURCES 

• Ippolito, Laura M., and Dolores R. Wallace, National Institute of Standards and 
Technology (NIST), A Study on Hazard Analysis in High Integrity Software Standards 
and Guidelines, NISTIR 5589, January 1995. 
http://hissa.nist.gov/HHRFdata/Artifacts/ITLdoc/5589/ (accessed 31 March 2010). 

• Guzie, Gary L., Army Research Laboratory (ARL), Vulnerability Risk Assessment, 
Technical Report ARL-TR-1045, June 2000. 
http://www.arl.army.mil/arlreports/2000/ARL-TR-1045.pdf  (accessed 31 March 
2010).  

• Hecht, Myron, “Failure Modes and Effects Analyses for Large Software Intensive 
Systems”, presented at 20th Systems and Software Technology Conference, Las 
Vegas, NV, 29 April-02 May 2008. http://sstc-online.org/2008/pdfs/MH2009.pdf 
(accessed 8 April 2010). 

5.1.2. Techniques and Tools for Analyzing Components for Potential 
Compositional Issues  

Developers of security-critical systems may also rely on risk modeling and analysis tools to 
provide an understanding of the hazards and threats that may directly affect the system. These 
tools allow for the modeling and identification of threats and hazards.  
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Static analysis tools provide the automated review of software source code, the results of which 
can identify potential vulnerabilities or safety hazards within the software occurring as a direct 
result of coding errors. While these tools are often used to perform a review of the software at 
the end of its development life cycle, taking advantage of static analysis tools throughout the life 
cycle—not just for review of custom-developed code, but also for open source code and other 
reused source code (e.g., legacy code)—will enable problems to be identified, and mitigated, 
earlier—and at lower cost. In some cases, organizations may prevent potentially insecure or 
unsafe code from entering into the code base at all. Nevertheless, it is important to note that most 
static analysis tools are developed either for security reviews or safety reviews, requiring a 
security- and safety-critical system to leverage multiple tools to achieve their goals. 

Unit testing is a software development technique that allows developers to test individual units of 
source code within the software as they are being developed. In particular, unit testing is 
increasingly becoming an important aspect of many software development methods—as a 
primary goal of many agile methods is to fully integrate testing into the software development 
cycle. Due to the flexibility of unit-testing, organizations can introduce safety and security tests 
into the unit-testing structure (which is often integrated with the compilation phase of a 
development environment). By merging the test and development phases of the traditional 
waterfall model, developers can ensure that any functional, safety or security defects are 
discovered as soon as they are introduced into the code, reducing the effort and resources 
necessary to remediate potential hazards. 

Fuzz testing is the introduction of randomly generated tests into the software testing 
environment. By randomizing either the inputs, or various aspects of inputs to different functions 
or components of the software, organizations have a higher chance of discovering potential 
corner-cases within the code that may not behave as expected—potentially discovering safety or 
security defects in the process. For example, organizations might introduce a string of random 
values into a component that expects only certain types of data (e.g., only capital letters), 
resulting in a test of the input validation techniques developed for the component. Fuzz testing 
can also be used to simulate the types of faults that might occur in an operational environment as 
a result of either intentional attacks or random safety hazards. 

ADDITIONAL SUGGESTED RESOURCES 

• Schmidt, Heinz, Monash University, “Trustworthy components—compositionality and 
prediction”, in Journal of Systems and Software, Volume 65 Issue 3, 15 March 2003, 
Pages 215-225. 

5.1.3. Techniques and Tools for Inter-Component Behavioral Analysis  

Inter-component behavioral analysis provides developers with an understanding of how different 
components within the system interact with one another—with the goal of identifying any 
security-relevant or safety-relevant risks introduced by composition. Using dynamic analysis, 
integrators run a client or harness application that performs a sequence of commands on the 
software, analyzing how the software reacts to these activities. Dynamic analysis can range from 
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integrated tool suites that aim to discover vulnerabilities or defects within the software to test 
scripts designed to assess how the overall application behaves as users perform intentional and 
unintentional operations on the software. Unlike static analysis, which only looks at the code-
level interaction between software, dynamic analysis has the potential to identify defects or 
hazard that occur as a direct result of the run-time configuration of components. For example, 
dynamic analysis should be able to determine if deadlocks occur as a result of component 
configuration—rather than as a result of code-level deadlocks. By integrating with fuzz testing 
and binary fault injection, organizations can put the multi-component system into a series of 
stress tests aimed to simulate the potential hazardous or malicious environment in which the 
software will be deployed—allowing for the discovery of safety- or security-critical defects that 
occur as a direct result of inter-component behavior. 

One of the most commonly used techniques for performing inter-component behavioral analysis 
is the use of integration testing, where organizations take components that have been previously 
unit-tested and test the system as a whole with the goal of identifying any potential integration-
level defects within the software. In many cases, integration testing simply involves ensuring that 
the expected behavior of the software as a whole occurs, but integration testing can be expanded 
to include inter-component tests that specifically target individual component interfaces. Using 
test harnesses to simulate the inputs to multiple components, integration testing can be performed 
on each component interface separately, including tests for security defects and safety hazards as 
well as regression tests to ensure that the component behaves exactly as previous components 
have in the past. Depending on the level of integration testing performed, organizations can have 
a better understanding of individual component interfaces while simultaneously ensuring that the 
system as a whole operates as expected. 

Because any security defects may lead to a situation where an attacker can introduce an 
intentional safety hazard, organizations can use penetration testing and vulnerability scanning to 
identify potential vulnerabilities that may arise as a result of inter-component behavior. In 
penetration testing, the tester attempts to gain unauthorized access to the system through any 
means available (e.g., discovering buffer overflows, SQL injections and/or performing social 
engineering attacks). A comprehensive penetration test can provide a wealth of information that 
can then be used to increase system security. However, one important aspect of penetration 
testing is the requirement that the penetration tester have a full understanding of the system. 
While most attackers will not have full working knowledge of each of the components, providing 
this information to a penetration tester will increase the likelihood of finding vulnerabilities as 
well as improving the overall value of the analysis.  

Specifically, penetration testers should be able to provide some insight into the general security 
of individual components and how they affect the system as a whole. For example, a penetration 
tester may identify vulnerabilities in the Java runtime environment that may allow for 
modification of running code. In addition to penetration testing, organizations may also use 
vulnerability analysis, which will scan the individual components of the system for known 
vulnerabilities (e.g., scanning the operating system and COTS products installed on the system). 
Any vulnerabilities identified by this analysis indicate components that are not fully patched—
which may server as valuable targets for the penetration tester. 
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Section 7.3 provides additional information on techniques discussed here. 

ADDITIONAL SUGGESTED RESOURCES 

• Möller, Anders, Mikael Nolin, Ian Peake, and Heinz W. Schmidt, “Probabilistic 
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of the 17th Euromicro Conference on Real-Time Systems, Palma de Mallorca, 
Balearic Islands, Spain, July 2005. 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.3403&rep=rep1&type=
pdf 

• Khan, Khaled M., University of Western Sydney (Sydney, Australia), and Jun Han, 
Swinburne University of Technology (Melbourne, Australia), “A Security 
Characterisation Framework for Trustworthy Component Based Software Systems”, 
in Proceedings of the 27th Annual International Computer Software and Applications 
Conference, Dallas, TX, 3-6 November 2003. 
http://www.ict.swin.edu.au/personal/jhan/jhanPapers/compsac03.pdf (accessed 29 
March 2010). 

                                                
53 Op. cit. Meacham, Standards Interoperability. 
54 Winograd, Theodore, Holly Lynne McKinley Schmidt for NAVSEA NOSSA, Software Security Assessment 
Tools Review, Draft 2 March 2009. 
55 Balestrini-Robinson, S., J.M. Zentner, and T.R. Ender, Georgia Tech Research Institute, “On Modeling and 
Simulation Methods for Capturing Emergent Behaviors for Systems of Systems”, presented at the National Defense 
Industrial Association 12th Annual Systems Engineering Conference, San Diego, CA, 26-29 October 2009. 
http://www.dtic.mil/ndia/2009systemengr/9041WednesdayTrack6Zentner.pdf (accessed 31 March 2010). Also: 
http://www.acq.osd.mil/sse/webinars/2010-03-09-SoSECIE-M&S-Emergent-Behaviors-Zentner-etal-brief.pdf 
(accessed 31 March 2010). 
56 McDermott, Edwin P., Sharam Sarkani, and Thomas A. Mazzuchi, George Washington University, “Air Force 
Modeling and Simulation Training Toolkit (AFMSTT)”, presented at the National Defense Industrial Association 
12th Annual Systems Engineering Conference, San Diego, CA, 26-29 October 2009. 
http://www.dtic.mil/ndia/2009systemengr/8825WednesdayTrack4McDermott.pdf (accessed 31 March 2010). 
57 Op. cit. Ye and Kelly, Contract-Based Justification, which describes a proposed framework and methodology for 
developing Compositional Safety Cases. 
58 An example of an automated version of such a code review can be found in Ewen Denney and Bernd Fischer, 
NASA, Generating Code Review Documentation for Auto-Generated Mission-Critical Software, in Proceedings of 
the Third IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT), 
Pasadena, CA, 19-23 July 2009. http://ti.arc.nasa.gov/m/pub/580/SMC-IT-Denney.pdf (accessed 14 January 2010). 
59 Firesmith, Donald. G., “Analyzing the Security Significance of System Requirements”, Proceedings of the 
Symposium on Requirements Engineering for Information Security, Paris, France, 25 August 2005. 
http://crinfo.univ-paris1.fr/RE05/W06/short3_firesmith.pdf (accessed 18 December 2009) or 
http://www.sreis.org/SREIS_05_Program/short3_firesmith.pdf (accessed 14 January 2010). 
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http://www11.informatik.uni-erlangen.de/Kooperationen/Veranstaltungen/Sicherheit1/PositionPapers/Broemme.pdf 
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61 Failure Mode, Effects, and Criticality Analysis (FMECA) is an extension of Failure Mode and Effects Analysis 
(FMEA). FMECA extends FMEA by including a criticality analysis, which is used to chart the probability  of failure 
modes against the severity of their consequences. It is preferred over FEMA for analysis of hazards in space systems 
and military systems of the North Atlantic Treaty Organization (NATO). See: DOD, Military Standard Procedures 
for Performing a Failure Mode, Effects, and Criticality Analysis, MIL-STD-1629A (Cancelled), 24 November 1980. 
http://www.fmeainfocentre.com/handbooks/milstd1629.pdf (accessed 31 March 2010). Also MIL-STD-1629A 
Notice 1, 7 June 1983. http://www.sre.org/pubs/Mil-Std-1629A(1).pdf (accessed 31 March 2010). See also: 
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Engineering Conference, San Diego, CA, 26-29 October 2009. 
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6. ARCHITECTURAL COUNTERMEASURES TO EMERGENT 
HAZARDS AND RISKS 

Once the risk and hazard analysis is complete, the developer needs to determine whether it is 
possible to mitigate or counteract any security or safety issues identified in individual COTS, 
open source, or legacy components, or in the assembly architecture by which those components 
are to be integrated. In worst cases, such mitigations/countermeasures will not be possible, and a 
software component(s) will have to be replaced. In other cases, the functionality of the 
problematic component can be modified, either by directly modifying or extending the 
component itself (e.g., adding a wrapper), or by adding into the architecture additional software 
and/or hardware components (e.g., application level firewall, virtual machine sandbox). This 
section explores the various mitigations and countermeasures available, aligned with their main 
objectives. 

ADDITIONAL SUGGESTED RESOURCES 
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(accessed 29 March 2010). 

• Anderson, Tom, Brian Randall, and Alexander Romanovsky, University of 
Newcastle-upon-Tyne, Wrapping the Future, in Proceedings of the International 
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August 2004. 

• van der Meulen, Meine J.P., Steve Riddle, Lorenzo Strigini, and Nigel Jefferson, 
University of Newcastle upon Tyne, Protective Wrapping of Off-the-Shelf 
Components, Technical Report Series CS-TR-857, August 2004. 
http://www.cs.ncl.ac.uk/publications/trs/papers/857.pdf (accessed 29 March 2010). 

• Papp, Zoltán, and Allard Zoutendijk, TNO Instistute of Applied Physics, “A Runtime 
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• Freeman, James W., “Defining and Employing a System of Systems COTS Strategy 
for Information Assurance (IA)”, presented at the 19th Systems and Software 
Technology Conference, Tampa Bay, FL, 18-21 June 2007. http://sstc-
online.org/2007/pdfs/JWF1709.pdf (accessed 8 April 2010). 

6.1. CONSTRAINED EXECUTION ENVIRONMENTS 

The purpose of execution environment constraints on component execution is to: 
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• Prevent unintended execution of unused functions and access to “dormant” and “dead” 
code; 

• Isolation of components whose behaviors fall outside specified acceptable limits, or 
which are deemed unsafe or untrustworthy for any reason, to prevent their execution from 
affecting the safe/trustworthy components of the system; 

• Enforce separation of “trusted” components from “untrusted” components; 

• Constrain anomalous component behaviors.  

Most tools that are used to isolate software components can be configured to impose specific 
constraints on the capabilities of components within those isolated environments. In this way, not 
only does the isolation of such components limit the “reach” of the results of any of their 
misbehaviors (so that the outcome does not affect the correct operation of any component outside 
of their isolated execution space), but the resources available to the component, the accesses they 
are allowed to perform, etc. can be limited to prevent certain types of misbehaviors from 
occurring at all.   

For example, a virtual machine can be configured to allow only certain types of communication 
to occur between any entity within the virtual machine and any external entity; with such a 
constraint, the output generated by any misbehaving component within the virtual machine can 
be essentially “blocked” from exiting the virtual machine and reaching any component outside it. 

Application frameworks that enable the enforcement of policies based on presence or absence of 
validated code signatures can also be used to limit the actions of components. For example, an 
unsigned component could be limited to performing only those functions known to be required 
by its role within a system as a whole, thereby preventing any unintended functions. 

6.1.1. Virtual Machines and Trusted Processor Modules 

In systems in which very high risk components may need to operate alongside very high-
confidence “trusted” components, it may be desirable to combine these two approaches, i.e., 
isolate the untrustworthy (“untrusted”) components in a sandbox, and isolate the high-confidence 
components in a TPM. In this way, the architecture will interpose “two degrees of separation” 
between the high risk/untrusted components and the high-confidence/trusted components. 

A less robust alternative to the TPM and VM isolation approaches is use of the permission-
granting capabilities provided by application frameworks such as Java and .NET. These 
mechanisms not only enable the developer of the system to grant permissions to signed code, but 
can be configured to limit the functionality of unsigned code that executes within the framework. 

Many UNIX/Linux-based and Real-Time OSs have security modules and separation kernels 
already integrated; in some cases, the operation of these modules/kernels can tailored by the 
developer/integrator, e.g., to ensure isolation of running processes based on a pre-defined policy. 
For example, the Linux kernel supports the designation of hard and soft real-time processes, 
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whereby certain processes can be guaranteed to run at specific intervals in time. This allows 
organizations to limit communications between trusted and untrusted processes while ensuring 
that any required activities can be completed in a timely manner—preventing any safety hazards 
from arising due to resource starvation or misbehaving components. 

For systems running in native UNIX or Linux without a VM, TPM, or application framework, 
the operating system’s permission-granting capabilities enable the configuration of “chroot 
jails”, in which untrusted code can be isolated to an extent by restricting the file system resources 
available to that running process.  

6.1.2. Code Signature as the Basis for Component Isolation 

A common mechanism for indicating “goodness” of a component is the digital code signature. 
This code signature can be applied after component analysis and testing, as a kind of “seal of 
approval” that indicates that the component has been found to be safe and trustworthy. At run 
time, the signature can be validated to ensure that the component has not been modified since the 
signature was applied.  

If a component has no signature, or its signature cannot be validated at run time, the component 
can be moved into a virtual machine sandbox that will isolate it so that the results of its execution 
cannot affect the rest of the system. 

The code signature can also be used to determine which components can be “trusted”. The 
architecture can also isolate those components, e.g., in a different virtual machine (VM) or in a 
hardware Trusted Platform Module (TPM), which ensure, with different levels of robustness63 
that no component operating outside the protected execution environment created by the VM or 
TPM can affect (alter or attack) them. Running components in VMs or TPMs also enables their 
execution to be monitored and their errors and exceptions/failures handled without harming the 
system as a whole. 

6.2. FILTERING OF “DANGEROUS” INPUTS TO/OUTPUTS FROM 
COMPONENTS 

Filtering of the inputs to a component or outputs from a component can be implemented by 
modifying the component itself (to add input or output validation logic), by applying a reused or 
custom-built wrapper to the component,64 or by interposing a commodity filtering application 
(e.g., firewall/gateway) between the component and other component(s). 

Filtering enables the component to review its input or output for acceptability, based on pre-
defined parameters, and to either reject (block) or modify (“sanitize”) the input/output before 
sending it on—in the case of output—or storing or acting upon it (in the case of input).  

Sanitization is the act of removing or altering some part of the input/output string. Sanitization 
can be simplistic—e.g., a string that exceeds certain length limitation may simply be truncated; a 
string that is incorrectly formatted, i.e., includes special characters when only alphanumeric 
characters are allowed, may simply be overwritten with zeroes. Or it can be more intelligently 
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altered, e.g., an incorrectly formatted string may have only the non-allowed characters deleted or 
overwritten. 

The criteria by which input or output is deemed unacceptable may be codified in a policy. For 
example, the policy may specify the acceptable length and format of input or output. Or it may 
go further to designate “white lists” or “black lists” of text strings that may or may not be 
allowed to appear in input or output. A white list indicates those strings that are allowed—the 
presumption being that any string not on the white list should be rejected or sanitized. A black 
list indicates those strings that are not allowed—the presumption being that any string not on the 
black list should be allowed. Black listing is less likely to result in the rejection of valid 
input/output that whoever compiled the white list failed to include on that list. White listing is 
less likely to result in dangerous inputs/outputs being accepted, because whoever compiled the 
black list forgot to include those strings on the list.  

Use of white lists and black lists can also add unacceptable processing overheads. To mitigate 
this, developers of systems in which such lists are needed often implement them in combination, 
usually with strings checked first against a black list, to catch the obviously unacceptable strings, 
and the remaining reduced list of strings then checked against a white list, to catch any unknown 
strings. 

The mechanism most often used to add filtering and checking logic to components is the 
wrapper, which is software interface code that is bound to the component in a way that 
interposes the wrapper interface between the wrapped component’s built-in interface and the 
interfaces of other component(s) with which the component interacts. By filtering output from 
the component or input to the component, wrappers can restrict the ability of external 
components to request or invoke features in the wrapped component, can wholly block or 
sanitize (modify) potentially problematic requests or computation results before releasing them. 
Decisions to filter or sanitize may be based on safety and validity checks implemented by the 
wrapper logic.  

A number of reusable software wrappers are available to perform validation and filtering of 
input. Java and .NET include filtering APIs that can be used to ensure that filtering functions are 
adequately performed.  

In embedded systems, it may be difficult to add filtering logic or wrappers because of the 
overhead and added code they impose. However, the increasing prevalence of UNIX/Linux- and 
Windows-based embedded operating systems is making it less burdensome to add filtering logic 
to real-time safety-critical systems. 

ADDITIONAL SUGGESTED RESOURCES 
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http://www.acsac.org/2001/papers/53.pdf (accessed 8 April 2010). 
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6.3. SPECIFIC AND EXPLICIT ERROR AND EXCEPTION HANDLING 

Safe, secure software requires significantly more error and exception-handling functionality than 
program functionality. This error and exception handling must be purpose-built, not generic, to 
minimize the possibility of faults escalating into failures. Regardless of whether a fault is 
accidental or intentionally-induced (as the result of an attack or exploit), rather than failing, the 
software should be able to keep running for as long as possible, if only at a degraded level of 
operation (i.e., reduced performance, termination of lower-priority functions, rejection of new 
inputs/connections). For safety-relevant (vs. safety-critical) software, if it must fail, the exception 
handler and architecture should combine to prevent the failure from placing the software into an 
unsafe or insecure state. For safety-critical software there is little or no threshold of tolerance for 
the delays typically involved in post-failure recovery and restoration. In such software, 
survivability measures must be implemented to prevent failures, full stop.  

As noted in Section 2, many of the inconsistencies that can arise in inter-component safety and 
security occur when one component sends data or commands in error to another component. As 
such, an important aspect of developing safe and secure component-based systems is in the 
development and maintenance of robust error handling procedures when implementing the 
connections between interfaces. Through an understanding of the expected inputs and outputs of 
various components—the glue code that provides a communication mechanism between multiple 
components can be written to implement additional error and exception handling logic beyond 
that provided in the individual components themselves.  In these situations, the glue code can 
provide assurance that the output of one component will meet the expected input of the next 
component while appropriately modifying data or performing appropriate actions in the presence 
of unexpected or unallowable data or commands, and for reacting to faults/exceptions in ways 
that prevent them from escalating into failures (consistent with the fault tolerance requirements 
of the system).  

See Appendix C for information on implementing robust error and exception handling. 

6.4. REUSE OF VETTED COMPONENTS AND SOFTWARE LIBRARIES  

Reusable vetted libraries components provide organizations with well-tested code that can be 
used to improve the safety or security of individual components.  For example, the Enterprise 
Security Application Programming Interface (ESAPI)65 offers well-tested security functionality 
that can be applied to individual components to improve their overall security framework.  Other 
libraries, like the Spring Security Framework66 can support aspect-oriented programming, where 
library functionality can be inserted into the component at run-time.  Similar techniques can be 
applied in the safety field, where common safety-critical functions (e.g., parameter checking) can 
be offloaded to a trusted aspect-oriented library or external component—precluding the need that 
a specific software component develop a custom implementation of the required functionality. 
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6.5. RISK-REDUCING MODIFICATION OF COMPONENTS 

While wrapping provides a somewhat limited means of adding logic to a component without 
modifying that component, there is the potential to make more far reaching alterations to 
components acquired in source code form (e.g., open source code, code from reuse repositories, 
legacy source code). Such modifications can have a number of different objectives: 

• Correct errors in the component; 

• Remove hazardous or vulnerable logic from the component; 

• Add logic to the component, e.g., code signature validation, user authentication, input 
validation and filtering, auditing/event logging, error handling and exception handling, 
interface protocols; 

• Remove dormant (unused) code or dead code. 

For some components there may be software development kits (SDKs) available that allow for 
the development of extensions to change or extend the component’s functionality. Unlike 
wrappers and other external filtering mechanisms, SDK extensions are incorporated into the 
component itself, thereby modifying the component. 

6.6. EXTERNAL SAFETY AND SECURITY CHECKS AND INTERLOCKS67 

Additional safety-specific and security-specific logic components may added to the system 
architecture to perform safety checks, including dynamic checks, and implement interlocks to 
limit the consequences of failures in individual components or the system overall. For example, a 
software watchdog may be added in combination with dynamic test inputs intended to reveal any 
software lock-ups. 

Increasingly, technology is being deployed that provides this level of control. Within VM-
environments, organizations may deploy software external to the VM that monitors the status of 
processes and applications running within the VM.  While this software is currently focused on 
maintaining a security posture, in many safety-critical environments, this type of information can 
provide insight into whether or not a safety-critical component is operating as expected. 

At a higher level, organizations may leverage application firewalls or other gateway applications 
that monitor all interactions between components and have the capability to alter those 
components in a desired fashion.  One of the most popular types tools in use are eXtensible 
Markup Language (XML) gateways, which can perform analyses of XML messages passing 
through an organization and serve as integration mediums (e.g., enterprise service bus) to convert 
messages from one format to another to enable improved interoperability between separate 
components. 

Further, many software development frameworks and APIs exist that allow for the integration of 
wrappers and “filters” to alter, audit and/or verify data that passes between various interfaces.  At 
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the lower levels, organizations may take advantage of object-oriented APIs and extend them to 
support the required features without altering the internals of an individual component; at a 
higher level, organizations could leverage features like Java EE’s support for “filter” objects 
through which all interaction pass.  When these frameworks are not available, organizations may 
also work on custom-developing modules that will act as intermediaries between the various 
systems-taking advantage of network- or OS-level APIs to capture messages between individual 
components of the system. 

6.7. SURVIVABILITY MEASURES  

Survivability—the ability of a system to continue operating despite the presence of faults, 
failures, attacks, etc.—of software-based systems is achieved, predominantly, at the architecture 
level, through a combination of component redundancy and component diversity. Component 
redundancy is achieved by including multiple copies of the same component in the system, along 
with a mechanism that monitors the execution of the components to detect any event (e.g., a fault 
or escalating series of faults) that may necessitate switching the burden of processing from a 
component that may soon fail to its replica. The number of redundant components in most 
systems is two: a primary and a “backup”. In some systems, however (those with extremely high 
safety and availability requirements), it may be desirable to implement more than two copies of 
critical components—keeping in mind that with redundancy also comes complexity, not least in 
the software that must monitor and act to switch processing from failing to non-failing copies.68 

Component diversity adds to the complexity, but also the survivability, of the system by not 
simply implementing exact replicas of the redundant components, but by implementing two 
components that are identical in functionality but different in their implementation. These 
components run simultaneously during system operation, under the assumption that an error or 
fault in one version of the component is unlikely to appear in the other version. Combined with 
redundancy, this ensures that not only is there an identical copy of a component that will keep 
running when its “twin” fails, but that the twins are fraternal rather than identical: both capable 
of the same functionality, but distinct enough to avoid sharing the same defects.  

A fairly long-standing technique for achieving component diversity is n-version programming,69 
whereby different developers build components to the same specification, with modeling, 
analysis, and testing to prove that the diverse components are functionally identical to the extent 
that processing in the system is correct regardless of which component performs any given 
function. 

More recently, in the research community biological and genetic models for diversity have been 
applied to software, e.g., for implementing software that can autonomically diversify, as well as 
adapt to continue operating correctly despite the presence of anomalous or dangerous external 
stimuli (inputs) from its environment. An example of such research is the Genesis project at the 
University of Virginia.70 

See Appendix C for further information on survivability measures for software-intensive 
systems. 
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7. ASSESSMENT AND TESTING OF COMPONENT-BASED 
SYSTEMS 

As part of determining the overall safety or security level of a component-based system, an 
organization needs to develop a robust residual safety risk assessment report.  Even more 
important, in light of the increasing interconnectedness of systems both within the DOD and the 
computing industry as a whole, security must be an important aspect of the safety risk 
assessment—for if an intentional safety fault can occur, the system is still unsafe.  To this end, 
the organization needs to perform an assessment of the component-based system—particularly 
when the component-based system is built mostly on COTS products in which the organization 
has little insight or control over the development of the individual components. Regardless of the 
development or acquisition process associated with individual components within a system, a 
system-wide assessment provides organizations with an understanding of the emergent 
properties—including any emergent risks or hazards—introduced through composition of 
components.  

In many cases, a system-level assessment is the closest an organization can come to matching the 
operating environment of the safety- or security-critical system prior to deployment. In fact, in 
some cases, these simulations can be more stringent than those tests performed with the entire 
system intact (for example, there are limits to the tests that can be performed on avionics 
software during test flights). Thus, the inclusion of these assessments within a residual safety risk 
assessment report is can greatly improve the assurance that the system is both safe and secure. 

Independent Validation and Verification (IV&V) can be used to increase the level of confidence 
in a system-level review by relying on an independent and objective third party to perform the 
system-level safety and security risk assessment.  As such, the resulting report is less likely to 
contain bias while benefitting from the expertise provided by a dedicated testing and analysis 
team.  The use of certified reviewers allows for assurance that the team conducting the IV&V 
has met appropriate requirements as specified by the IV&V contract, allowing for the 
organization to ensure that the quality of reviewers within the IV&V team is as good as or better 
than an equivalent in-house team.  

Independent Safety Assessments (ISAs) and Independent Safety Reviews (ISRs) are often 
required by mandate, for example see SECNAV Instruction 5100.10J and Army Regulations 70-
1 and 385-16, FAA Order 1100.161. Similarly, independent security tests and evaluations, such 
as Common Criteria Evaluations and Security Test and Evaluation (ST&E) within systm 
Certification and Accreditation (C&A) regimes, are also required by mandate. Moreover, some 
government organizations such as NASA, DOD, and NIST have established their own software 
IV&V facilities for safety, security, and/or reliability testing. 

While IV&V can serve as an important component in generating a residual risk assessment 
report, it is important to note that those performing the IV&V will not have as thorough an 
understanding of the system itself as an internal review team would otherwise have.  As such, it 
may be necessary to augment IV&V with an internal review, allowing internal teams to 
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specifically test potentially known weak-spots and include those results in the overall risk 
assessment report. 

ADDITIONAL SUGGESTED RESOURCES 

• Voas, Jeffrey, “Testing Software for Characteristics Other than Correctness: Safety, 
Failure-tolerance, and Security”, in Proceedings of the 16th International Conference 
and Exposition on Testing Computer Software, Bellevue, WA, March 1996. 
http://www.cigital.com/papers/download/ictcs96.pdf (accessed 31 March 2010). 

• Wallin, Christina, ABB Corporate Research, “Verification and Validation of Software 
Components and Component Based Software Systems”, in Chapter 5: “Component-
Based Development Process”, of Ivica Crnkovic and Magnus Larsson (editors), 
Building Reliable Component-Based Systems (Norwood, MA: Artech House, 2002). 
http://www.idt.mdh.se/cbse-book/extended-reports/05_Extended_Report.pdf 
(accessed 8 April 2010). 

7.1. SAFETY ASSESSMENT AND TESTING 

As identified by the Department of Transportation,71 the same suite of tests performed on 
individual components may be performed on the system as a whole as an important aspect of a 
system-wide safety assessment. These tests include both system-level functional testing and 
system-level fault injection. In conjunction, organizations should aim to inject faults into the 
individual components as well as into the system as a whole, thereby introducing any system-
level faults that may result from tests that would have been flagged by performing fault injection 
on the component itself. 

In addition, organizations should continue to perform the safety verification and validation 
activities that have traditionally been included in the system development life cycle. However, 
where possible, safety verification of component requirements, design, coding, module testing, 
and integration testing should be included for individual components as well as for the system as 
a whole. In the case where COTS components are included in the system, “a rigorous component 
verification process must be adopted for all COTS components to attain a portion of the 
confidence level provided by the missing verification activities during requirements 
specification, software design, and software coding.”72 

Safety verification can be supported by numerous tools and techniques discussed in Section 5.1, 
including:73 

• Hazard Analysis: Identifying potential hazards facing the system by considering the 
individual components of the system and its operating environment. 

• Cause Consequence Analysis: Identifying the possible consequences associated with 
chosen events within the system. 
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• Fault Tree Analysis: Identifying the individual faults that lead to a specific safety 
hazard, allowing developers to calculate a probability that the safety hazard will occur. 

Tools are available to perform fault injection against individual components or the system as a 
whole. In general, these tools will aid in performing fuzz tests against the system as well. In 
some cases, organizations may require analyzing the source code of COTS products and, where 
legally applicable, organizations may take advantage of a number of safety-oriented decompilers 
and binary analysis tools to gain some insight into the safety of individual components’ code 
bases. 

By performing safety assessments at both the component and system level, including equivalent 
rigorous verification processes for COTS components, the developer can develop robust 
documentation describing both how and why the component-based system satisfies its safety 
requirements. 

ADDITIONAL SUGGESTED RESOURCES 

• Skramstad, Torbjørn, Norwegian University of Science and Technology, 
“Assessment of Safety Critical Systems with COTS Software and Software of 
Uncertain Pedigree (SOUP)”, in Proceedings of the First European Research 
Consortium for Informatics and Mathematics Workshop on Software-Intensive 
Dependable Embedded Systems, Porto, Portugal, 30 August-1 September 2005. 
http://www.itk.ntnu.no/misc/ercim/05/final_draft/skramstad_2005_Euromicro_ERCIM
_WS_Camera_Ready.pdf (accessed 31 March 2010). Also: 
http://www.ercim.eu/publication/ws-proceedings/EMB-SYS2005.pdf (accessed 31 
March 2010). 

• Ericson, II, Clifton A., Hazard Analysis Techniques for System Safety (Hoboken, NJ: 
John Wiley & Sons, Inc., 2005). 

• Wysocki, Joseph, HRL Laboratories, and Rami Debouk, General Motors, 
“Methodology for assessing safety-critical systems”, in International Journal of 
Modelling and Simulation, Volume 27  Issue 2, March 2007, Pages 99-106. 

• Lauritsen, Torgrim, “Safety analysis of Object-Oriented software”, 2005, 
http://www.idi.ntnu.no/emner/dt8100/Essay2005/lauritsen.pdf (accessed 8 April 
2010).  

• Brosgol, Ph.D., Benjamin M., “Safety and Security: An Analysis of Certification 
Issues and Technologies”, presented at 20th Systems and Software Technology 
Conference, Las Vegas, NV, 29 April-02 May 2008. http://sstc-
online.org/2008/pdfs/BB2030.pdf (accessed 8 April 2010). 

7.2. SECURITY ASSESSMENT AND TESTING 

Much like safety assessments, the majority of security testing activities can be performed both at 
the component and system level. In particular, all security tests that do not rely on access to the 
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source code can be performed on COTS components. Where possible, organizations can also 
include information about the security practices used by the developer of the COTS components 
(for example, use of a well-documented security-enhanced development life cycle may be of 
interest when assessing the security of the COTS component). 

When performing a security assessment of component-based systems, organization can leverage 
their usual techniques, applying them both to the individual components of the system as well as 
the system as a whole. In some cases, resources may be better spent by focusing on a specific 
component or on the system as a whole (for example, penetration testing resources may be better 
spent on the system as a whole rather than on each individual component). Other assessment 
techniques, including the use of automated tools can be performed throughout the security 
assessment process. Nevertheless, it is important that the security assessment process be a 
parallel of the safety assessment process, with the following security verifications being 
performed on requirements, design, coding, module testing and integration testing.  

Security verification can be supported by a wide variety of tools and techniques, including:74 

• Manual Code Review (static analysis): Identifying potential vulnerabilities by 
performing a manual review of security-critical portions of code (when available). 

• White Box Testing (static and dynamic analyses): Identifying potential vulnerabilities 
by analyzing the source code for potential security defects or known-insecure libraries 
and code structures. In static analysis, only the source code is analyzed. In dynamic 
analysis, the source code is compiled and executed, with execution events traced to the 
original source code, to help determine the segments of the source code responsible for 
observed anomalies, faults, etc. 

• Black Box Testing: Identifying potential vulnerabilities by performing dynamic analysis 
of the executing binary component/system and/or static analysis of the binary executable 
code. 

• Penetration Testing: Identifying potential vulnerabilities by subjecting the system (or 
individual components) to attacks from a skilled professional. 

• System-level Analysis: Identifying potential vulnerabilities at the design- or system-level 
of the application by performing a thorough review of system and component architecture 
and design documents. 

By performing security assessments at both the component and system level, including 
equivalent processes for COTS components, the developer can develop robust documentation 
(e.g., in the form of a test report) describing both how and why the component-based system 
meets its security requirements. 

ADDITIONAL SUGGESTED RESOURCES 

• Khan, Khaled M., University of Western Sydney (Sydney, Australia), and Jun Han, 
Swinburne University of Technology (Melbourne, Australia), “Deriving Systems Level 



Safety and Security Considerations for Component-  
Based Engineering of Software-Intensive Systems 1 February 2011 

 

58 58 

Security Properties of Component Based Composite Systems”, in Proceedings of the 
2005 Australian Software Engineering Conference, Brisbane, Australia, 29 March-1 
April 2005. http://www.ict.swin.edu.au/personal/jhan/jhanPapers/aswec05KK-JH.pdf 
(accessed 29 March 2010). 

• Wysopal, Chris, Lucas Nelson, Elfriede Dustin, and Dino Dai Zovi, The Art of 
Software Security Testing: Identifying Software Security Flaws (Boston, MA: 
Addison-Wesley Professional, 2006). 

• Krsul, Ivan Victor, Software Vulnerability Analysis, PhD thesis, Purdue University, 
May 1998. http://ftp.cerias.purdue.edu/pub/papers/ivan-krsul/krsul-phd-thesis.pdf 
(accessed 29 March 2010). 

• Dowd, Mark, John McDonald, and Justin Schuh, The Art of Software Security 
Assessment: Identifying and Preventing Software Vulnerabilities (Boston, MA: 
Addison-Wesley Professional, 2006). 

• Ashbaugh, Douglas A., Security Software Development: Assessing and Managing 
Security Risks (Boca Raton, FL: Auerbach Publications, 2009). 

                                                
71 Op. cit., Clough, Anne, Train Control Applications. 
72 Ibid, page 20 
73 Op. cit. Brömme, “Hazard Analysis of IT Systems”. 
74 Ibid. 
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8. MAINTENANCE CONSIDERATIONS 

The safety and security concerns described here can arise during maintenance of any safety-
/security-critical system, but are particularly relevant for component-based systems.75  

Either due to changes in system requirements or underlying technologies, or changes in the 
capabilities of or safety/security properties in later versions of NDI components, it is likely that 
at least some components will need to be replaced over the lifetime of the component-based 
system. In some cases, at the time the system was initially assembled, only partly-adequate 
components may have been available to fulfill certain roles. In other cases, after the system is 
deployed, a failure, mishap, or vulnerability exploit may occur that reveals a faults or 
vulnerabilities in certain components that were not caught during pre-deployment testing. 

Even when a system failure can be isolated to a fault or exploited vulnerability in a specific NDI 
component, it may be extremely difficult to induce the component’s developer (or, in the case of 
COTS, vendor) to acknowledge and fix the component to eliminate the problem. Even if a 
vendor does agree to make the change, the normal release schedule for COTS products may 
delay the fix for an unacceptable amount of time. In such cases, it may be necessary to substitute 
a functionally interchangeable but safer/more secure component, or to implement a mitigation 
such as a wrapper or execution constraint, at least until a more robust version of the flawed 
component becomes available. 

For this reason, throughout the system’s lifetime, the marketplace should be continuously 
monitored for current and emerging products and technologies. Both system development and 
certification/acceptance/accreditation processes need to be as flexible as possible, to allow for 
the substitution of functionally interchangeable but safer/more secure components, or addition of 
new components to satisfy new requirements.  

It is imperative that immediately upon discovery of a fault or vulnerability that has the potential 
to cause a system failure every effort is taken to mitigate the increased risk through short-term 
countermeasures until the vendor releases a security patch/fix, or until other more permanent 
countermeasures and safeguards can be applied to isolate or replace the flawed component. Some 
effective short-term countermeasures, mainly operational, include strict auditing and monitoring 
of the application’s usage and input and output data streams (with appropriate administrator 
response to detected potential mishaps or exploits), reconfiguration of the execution environment 
access control-type restraints to more tightly limit the exposure of the component, and/or the 
potential damage and impact of a fault or exploit in that component. 

                                                
75 Op. cit., DISA, Developer’s Guide. 
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9. RISK MITIGATION STRATEGY ROADMAP 

All of the architectural engineering controls and countermeasures discussed in Section 6 of this 
document can help mitigate safety and safety-impacting security risks that arise in component-
based software-intensive systems, there is a minimum “core set” that should be undertaken for 
every safety-critical system. Table 9-1 maps the mitigations in this “core set” to the phases of the 
system life cycle in which they should be implemented. 

Table 9-1. Risk Mitigation Strategy Roadmap 

Life Cycle 
Phase 

Mitigation Details 

Acquisition Avoiding SOUP 
Components.  

Limiting acquisition and use of software of unknown 
pedigree/provenance (SOUP) to only system 
functions that are neither “trusted” nor exposed to 
direct access. Never use SOUP components to 
implement critical/trusted functions or functions at the 
system boundary (i.e., functions that can be easily 
found and targeted by an attacker). 

Architectural Risk 
Assessment.  

This includes Safety Hazard Analysis and Security 
Risk Analysis, as basis for adjusting system software 
architecture to include necessary risk mitigation 
controls and countermeasures 

Constraints on Execution 
Environment.  

Use of VMs, TPMs, wrappers, filters, etc., to reduce 
exposure of known-vulnerable and otherwise 
untrustworthy components, and to isolate such 
components from trustworthy components (and vice 
versa) 

Architecture 

Blocking Access to Unused 
Functions.  

Use execution environment constraints, wrappers, 
filters, etc., to minimize external access to 
undocumented features, unused functions, 
dormant/dead code 

COTS SDKs.  Use vendor-provided SDKs whenever possible to 
extend COTS component functionality (e.g., to enable 
signature validation, add input validation logic or 
explicit error/exception handling logic, etc.), or to 
modify component functionality (e.g., to disable 
unused functions). 

Checksum Monitors.  Implement these monitors to observe system 
operation for evidence of system and data tampering. 

Assembly 

Code and Data Digital 
Signatures.  

Digitally sign known-trustworthy code components 
and critical/sensitive data, to provide proof of 
authenticity and indications of tampering. This will also 
require implementation of signature validation logic in 
those other components that interact with the signed 
components/consume the signed data; such logic 
should prevent execution of components  and use of 
data whose signatures cannot be validated. 
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 Specific, Explicit Error and 
Exception Handling Logic.  

Addition of explicit error and exception handling logic 
(if necessary as wrappers) to prevent undefined 
execution of unused functions within individual 
components 



Safety and Security Considerations for Component-  
Based Engineering of Software-Intensive Systems 1 February 2011 

 

62 62 

10. CONCLUSION  

The safe and secure operation of component-based systems relies in large part on the ability to 
trust the system as a whole, and all of its critical components (both NDI and custom) as well as 
the architecture according to which those components are assembled. As long ago as 1988, in its 
report on the Strategic Defense Initiative’s Ballistic Missile Defense (BMD) technology,76 the 
U.S. Congress Office of Technology Assessment made several observations that still hold true 
today for software components in complex, software-intensive weapons systems (especially 
COTS/NDI components). Some of the key points from that report should be considered before 
undertaking the assembly of components to produce a reliable, safe, survivable weapons system:  

1. The nature of software and experience with large, complex software systems indicate that 
there will likely always be some irresolvable questions about how dependable a highly 
complex software-intensive weapon system assembled from components can be. 

2. Existing large software systems, such as the long-distance telephone system, have 
become highly dependable only after extensive operational use and modification during 
which period errors that cause failures can be found and corrected. 

3. Given the current state of the art in software engineering, complex systems cannot be 
trusted to be free of catastrophic failures before a period of extensive use.  

4. A complex software-intensive weapon system assembled from components should 
probably not be trusted to work properly the first time due to the probable presence of 
errors that could cause catastrophic failures.  

5. It is difficult to judge whether or not software, and particularly NDI software, is 
dependable and trustworthy. If evaluations of dependability and trustworthiness rely on 
the results of simulations of the weapon system’s use in battle, a second critical question 
whether the battle simulations could be modeled closely and accurately enough to reveal 
all potential catastrophic system failures, and more importantly to enable those failures to 
be traced back to their root causes in individual software components or inter-component 
interfaces. 

Attributes that most affect the ability to trust COTS/NDI components include the safety and 
security of the components’ behaviors and interfaces, as observed during analysis and testing, 
and pedigree and provenance of those components (i.e., origin of the component, how the 
component has been handled throughout its life cycle, reputation and track record of its 
developers).  

Unless the integrator of the weapons system software discovers as many of these attributes as 
possible about each component to be used, he/she will be assuming unacceptable level of risk. 
Components about which such information cannot be discovered must be considered 
untrustworthy, and system safety and security engineering techniques must be applied to mitigate 
the hazards and risks posed by allowing the component to interoperate with other components in 
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the system, and allowing the component to be accessed by entities external to the system (human 
users, other systems). 

In the integration of the system, rules—or contracts—governing the component’s interactions 
with all other components need to be defined. These contracts will specify all inputs and services 
each component expects to receive from others, and all outputs and services the component will 
be expected to provide to others. Hazard analysis and risk analysis need to be undertaken to 
determine whether those expectations can be satisfied safely and securely, given the inability to 
trust one or more of the components to which the contract pertains.  

For any interaction that cannot be assured to occur safely or securely, safety/security controls 
and countermeasures need to be interposed between the two components that are parties to the 
contract governing that interaction, to mitigate or eliminate (the latter may be required for safety, 
for which “room for error” is often less tolerable than it is for security) the safety hazards and 
security risks. These controls will either prevent the interaction from occurring (e.g., virtual 
machines and TPMs are two controls that can be used for this purpose), or will change the nature 
of the interaction by altering the output provided by one component as input to the next (e.g., 
filtering and input validation wrappers may be used to provide this kind of control). In addition, 
architectural-level mitigations may also be deployed (e.g., using a minimized OS). 

System developers and integrators should be reluctant to trust any component about which 
insufficient information about can be discovered about its properties. This information should be 
discovered primarily through direct analysis and testing of the component, in isolation and in 
combination with other components, using techniques described in this paper.  

Another source of information is “indirect evidence”, such as third-party reviews and analysis 
results, Common Criteria Security Targets, and other formal evaluation or certification 
documentation, developer/vendor claims, and knowledge of the component’s pedigree and 
provenance, including its development process. However, a component should never be trusted 
based solely on indirect evidence, no matter how plentiful. While indirect evidence can be useful 
for helping flesh out the discoveries made during direct component analysis/testing, at a 
minimum some level of black box testing (if no source code is available) should always be 
performed to validate the claims stated or implied by the indirect evidence.  

Further complicating matters is the inability for those analyzing and testing components to fully 
predict whether the safety and security properties those components exhibit in isolation will 
remain evident once those components interact with others in the system within a typical 
operational context, and whether they will further remain safe and secure when the system is 
exposed to hazards or security threats.  

At the whole system level, then, the trustworthiness of components must be determined based 
not only on the component’s direct interactions with other components, but on the component’s 
observed behaviors in response to direct inputs and also “chain reaction” events. The best way to 
achieve this visibility into component behaviors is through component analysis and testing 
within an architectural framework. This framework should simulate, as closely as possible, the 
actual system architecture into which the component will be integrated.  
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Analysis of each component’s behavior as it executes within the architectural framework will 
provide knowledge to the analyst/tester that single-component and pair-wise-component testing 
cannot. Such testing will enable the analyst/tester to observe all components simultaneously as 
they interact. The tester can observe components as they interact under normal conditions, and 
through instrumentation of inputs and sensor stimuli and also “tampering” with the system—e.g., 
to remove a power source, disconnect a network cable, launch a denial of service attack pattern, 
etc., through simulated safety mishaps or security attacks. Unfortunately, few systems can be 
built entirely from known-trustworthy (and thus justifiably trusted) components. Before 
accepting untrustworthy (and thus untrusted) components, however, a trade-off analysis should 
be performed that determines whether the perceived benefits, in terms of minimized 
development effort and time, do indeed outweigh the safety hazards and security risks introduced 
by the untrustworthy components: not just in terms of initial development cost, but whole 
lifecycle cost—through system de-commissioning and disposal. This trade-off analysis needs to 
consider not only development costs but costs associated with maintenance, patching, updating, 
change control, ongoing hazard and risk analyses, etc.  

It is critical that the tradeoff analysis factor in not only the lifecycle costs of the untrustworthy 
component itself, but of all controls/countermeasures needed to mitigate the hazards and risks the 
component poses to the system. It may turn out that what appears to be a savings from use of an 
untrustworthy component is, in fact, only a savings in terms of the initial development cost: the 
component could well represent a loss in terms of its overall lifecycle cost.  

ADDITIONAL SUGGESTED RESOURCES 

• Wood, Bill J., “Software Risk Management for Medical Devices”, in Medical Device 
and Diagnostic Industry, January 1999. 
http://www.bestechconsulting.biz/Software%20Risk%20Management%20for%20Med
ical%20Devices.pdf (accessed 29 March 2010). 

                                                
76 Op. cit., Johns, Sharfman, et al. SDI. 
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APPENDIX A. ABBREVIATIONS, ACRONYMS, AND 
GLOSSARY 

Section A.1 provides amplifications of the abbreviations and acronyms used in this document. 
Section A.2 is a glossary that defines terms used throughout this document which were not 
defined in Section 2. 

A.1. ABBREVIATIONS AND ACRONYMS 

AFMSTT Air Force Modeling and Simulation Training Toolkit 

ALARP As Low As Reasonably Practical 

API Application Programming Interface 

ARL Army Research Laboratory 

BMD Ballistic Missile Defense 

CNAD Conference of National Armaments Directors 

CMU Carnegie Melon University 

CORBA Common Object Request Broker Architecture 

COTS Commercial Off-The-Shelf 

DACS Data & Analysis Center for Software 

DCOM Distributed Component Object Model 

DERA Defence Evaluation and Research Agency 

DHS Department of Homeland Security 

DOD Department of Defense 

DOE Department of Energy 

ESAPI Enterprise Security Application Programming Interface 

FAA Federal Aviation Administration 

FHA Fault Hazard Analysis 

FMEA Failure Modes and Effects Analysis 

FMECA Failure Mode, Effects and Criticality Analysis 

GUI Graphical User Interface 

IDL Interface Description Language 

IEC International Electrotechnical Commission 

IEEE Institute for Electrical and Electronics Engineers 

IFIP International Federation for Information Processing 

iFMECA Interface FMECA 

INCOSE International Council on Systems Engineering 



Safety and Security Considerations for Component-  
Based Engineering of Software-Intensive Systems 1 February 2011 

 

66 66 

ISA Independent Safety Assessment 

ISO International Organization for Standards  

IV&V Independent Validation and Verification 

Java EE Java Enterprise Edition 

M&S Modeling and Simulation 

MHA Maintenance Hazard Analysis 

MIT Massachusetts Institute of Technology 

NASA National Aeronautics and Space Administration 

NATO North Atlantic Treaty Organization 

NAVSEA Naval Sea Systems Command 

NDI Non-Developmental Item 

NIST National Institute of Standards and Technology 

NOSSA Naval Ordinance Safety and Security Activity 

OHA Operating Hazard Analysis 

OS Operating System 

PHA Preliminary Hazard Analysis 

SCI System Concepts and Integration 

SDK Software Development Kit 

SHA Software Hazard Analysis 

SHA System Hazard Analysis 

SOUP  Software of Unknown Pedigree/Provenance 

SSHA Subsystem Hazard Analysis 

SQL Structured Query Language 

TPM Trusted Platform Module 

VM Virtual Machine 

XML eXtensible Markup Language 

 

A.2. GLOSSARY 

Legend of Sources for Definitions 

Reference Document 

DAU Defense Acquisition University, Glossary of Defense Acquisition 
Acronyms and Terms, 13th Edition, November 200977 

Risk DAU, Risk Management Guide for DOD Acquisitions, Sixth Edition, 
August 2006.78 
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JCIDS Chairman of the Joint Chiefs of Staff, Manual for the Operation of the 
Joint Capabilities Integration and Development System, 31 July 200979 

FAR Federal Acquisition Regulation Subpart 2.10180 

6212.01E CJCS Instruction 6212.01E, Interoperability and Supportability of 
Information Technology and National Security Systems, December 
200881 

882D DOD, Department of Defense Standard Practice for System Safety, MIL-
STD-882D, 10 February 200082

  

498 DOD, Software Development and Documentation, MIL-STD-498, 5 
December 199483 

Maier Maier, Mark W., The Aerospace Corporation, “Architecting Principles for 
Systems-of-Systems”84 

Anti-Tamper (AT). Systems engineering activities intended to prevent and/or delay the 
exploitation of critical or sensitive technologies in U.S. systems by deterring efforts of an 
adversary or other individual to reverse-engineer, exploit, or develop countermeasures against a 
system or system component. [DAU] 

Architecture. The structure of components, their interrelationships, and the principal guidelines 
governing their design and evolution over time. [JCIDS] (2) The organizational structure of a 
system that identifies its components, their interfaces, and the concept of execution among them. 
[498] 

Availability. A measure of the degree to which an item is in an operable state and can be 
committed at the start of a mission when the mission is called for at an unknown (random) point 
in time. [DAU] 

Commercial Off-The-Shelf (COTS). Any commercial item (excluding include bulk cargo items 
such as agricultural products and petroleum) sold in substantial quantities in the commercial 
marketplace and offered to the government under a contract or subcontract at any tier, without 
modification, in the same form in which it was sold in the marketplace. [FAR] 

Configuration. A collection of an item’s descriptive and governing characteristics, which can be 
expressed in functional terms, i.e., what performance the item is expected to achieve; and in 
physical terms, i.e., what the item should look like and consist of when it is built. 

Embedded Software. Software physically incorporated into a physical system, device, or piece 
of equipment whose function is not purely data processing, or external but integral to that 
system/device/equipment. The functionality provided by embedded software is usually 
calculation in support of sensing, monitoring, or control of some physical element of the 
equipment, device, or system, e.g., mathematical calculations of distances used in calibrating the 
targeting mechanisms of a weapon system; interpretation and comparison of heat sensor readings 
in a nuclear-powered submarine engine against a set of safe temperature thresholds. 
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Failure. An event in which any part of an item does not perform in conformance with its 
specification. A software failure is the inability, resulting from a fault in the software, to perform 
an intended logical operation as specified in the presence of the specified data or environment. 
[DAU] 

Hazard. A condition that is a prerequisite to a mishap. [882]  

Independent Verification and Validation (IV&V). Systematic evaluation (through review, 
assessment, and/or testing) of a product by an organization or individual that is not responsible 
for or involved in developing that product. [498 adapted] 

Interchangeability. A condition that exists when two or more components possess capabilities 
and properties such that the components are equivalent in functionality, performance, and 
dependability. This equivalence enables the components to be exchanged one for the other 
without alteration to the components themselves or to any adjacent/adjoining components, except 
through reconfiguration or wrapping. [DAU adapted] 

Interface. The functional, physical, and logical characteristics required at a common boundary 
or connection  between components, systems, and/or people to enable those components, 
systems, and/or people to communicate, collaborate, exchange data and instructions, etc. [DAU] 

Interoperability. The ability of systems, components, or units to provide data and services to 
and accept the same from other systems, components, or units, and to use the data and services 
so exchanged to enable them to operate effectively together. [6212.01E adapted] 

Mishap. An unplanned event or series of events resulting in death, injury, occupational illness, 
or damage to or loss of equipment or property, or damage to the environment.  An accident. 
[882] 

Model. A representation of an actual or conceptual system that involves mathematics, logical 
expressions, or computer simulations that can be used to predict how the system might perform 
or survive under various conditions or in a range of hostile environments. [DAU] 

Module. An independently-compilable unit of software made up of one or more procedures or 
routines or a combination of procedures and routines. [DAU] 

Non-Developmental Item (NDI). Any previously developed item that requires only minor 
modifications or modifications of the type customarily available in the commercial marketplace 
in order to meet the requirements of the acquirer. [DAU]  

Non-Developmental Software. A software product developed for either general use or use 
across multiple projects, instances, or uses, or developed for a specific project, instance, or use 
but reused for a different project/instance/use. Examples include, but are not limited to: COTS 
software, open source software, software in reuse libraries, or any other pre-existing software. 
See also Non-Developmental Item (NDI), Commercial Off-The-Shelf (COTS). [498 adapted] 
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Probability. The aggregate likelihood of the occurrence of a set of related or unrelated events. 
[882D adapted] 

Program. A major, independent part of a software system. [DAU]. A combination of computer 
instructions and data definitions that enables computer hardware to perform computational or 
control functions. [498] 

Dependability. The ability of a system and its parts to perform its mission without failure, 
degradation, or demand on the support system under a prescribed set of conditions.  Software 
reliability is the probability that software will not cause a failure of a system for a specified time 
under specified conditions. Also referred to as Reliability. [DAU] 

Design. Those characteristics of a system that are selected by the developer in response to the 
requirements.  Some will directly satisfy the requirements; others will be elaborations of 
requirements, such as definitions of all error messages; others will be implementation-related, 
such as decisions, about what software units and logic to use to satisfy the requirements. [498 
adapted] 

Reuse. The use of NDI(s) to develop or update a system. [DAU adapted] 

Risk. (1) A measure of future uncertainties in achieving system performance goals and 
objectives within defined functional and performance constraints. Risk can be associated with all 
aspects of a system and its environment (e.g., threat, technology, maturity, supplier capability, 
design maturation, performance against plan). Risks have three components: (i) A future root 
cause (hazard or threat), which, if eliminated or corrected, would prevent a potential 
consequence from occurring, (ii) the probability (or likelihood), assessed at the present time, of 
that future root cause/threat being realized, and (iii) the anticipated consequence (or effect) of 
that root cause/threat being realized. [Risk] (2) An expression of the possibility/impact of a 
mishap or attack/exploit in terms of hazard or compromise severity and hazard or compromise 
probability. [882D adapted]  

Risk Assessment. A comprehensive evaluation of risk and its associated impact. [882D] 

Risk Management. The overarching process that encompasses identification, analysis, 
mitigation planning, implementation of mitigation(s), and tracking of future root causes/threats 
and their consequences. [Risk] 

Safety-Critical. Refers to a condition, event, operation, process, or item of whose proper 
recognition, control, performance or tolerance is essential to safe system operation or use, e.g., 
safety-critical function, safety critical path, safety critical component. [882D] 

Safety-Critical Software Components. Those software components and units whose errors can 
result in a potential hazard, or loss of predictability or control of a system. [882D] 

Severity. A measure of the worst possible consequence that could result from an event. [882D 
adapted] 
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Simulation. A method for implementing a model. It is the process of conducting experiments 
with a model for the purpose of understanding the behavior of the system modeled under 
selected conditions or of evaluating various strategies for the operation of the system within the 
limits imposed by developmental or operational criteria. Simulation may include the use of 
analog or digital devices, laboratory models, or “test bed” sites. [DAU] 

Software System. A system consisting solely of software and possibly the computer equipment 
on which the software resides and operates. [498] 

Subsystem. A component of a system that in itself may constitute a system. In a system of 
systems, a subsystem is always a system [882D adapted] 

Survivability. The ability of a system and its crew to avoid or withstand a manmade hostile 
environment without suffering an abortive impairment of its ability to accomplish its designated 
mission. 

System. The combination of two or more hardware, software, and/or data components in such as 
way that they can interoperate to satisfy one or more functional requirements. [DAU] (2) A 
composite, at any level of complexity, of personnel, procedures, materials, tools, equipment, 
facilities, and software.  The elements of this composite entity are used together in the intended 
operational or support environment to perform a given task or achieve a specific purpose, 
support, or mission requirement. [882D] 

System of Systems (SoS). (1) Two or more independent and useful systems integrated into a 
larger “super system” that delivers unique capabilities. [JCIDS] (2) A large widespread 
collection or network of systems functioning together to achieve a common purpose. [Maier] In 
such an arrangement, each system within a SoS can be seen as a component of that SoS. 

System Safety. The application of engineering and management principles, criteria, and 
techniques to optimize all aspects of safety within the constraints of operational effectiveness, 
time, and cost throughout all phases of the system life cycle. [882D] 

Trade-off. Selection among alternatives with the intent of obtaining the optimal, achievable 
system configuration.  

Vulnerability. (1) An inherent weakness(s) in a component or system that can be exploited to 
effect an attack. (2) The characteristics of a component or system that cause it to suffer a definite 
degradation (loss or reduction of capability to perform the designated mission) as a result of 
having been subjected to a certain (defined) level of effects in an unnatural (man-made) hostile 
environment. [DAU adapted] 

                                                
77 Download from: https://acc.dau.mil/GetAttachment.aspx?id=17650&pname=file&aid=48053 (accessed 27 March 
2010). 
78 Download from: http://www.dau.mil/pubs/gdbks/docs/RMG%206Ed%20Aug06.pdf, (accessed 30 March 2010). 
79 Download from: https://acc.dau.mil/communitybrowser.aspx?id=267116 (accessed 30 March 2010).  
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80 Download from: http://farsite.hill.af.mil/reghtml/regs/far2afmcfars/fardfars/far/02.htm#P10_633 (accessed 30 
March 2010). 
81 Download from: http://www.dtic.mil/cjcs_directives/cdata/unlimit/6212_01.pdf (accessed 30 March 2010). 
82 Download from: http://www.safetycenter.navy.mil/instructions/osh/milstd882d.pdf (accessed 30 March 2010). 
83 Download from: http://wwwedms.redstone.army.mil/edrd/ref498/498std.pdf (accessed 30 March 2010). 
84 Download from: http://www.infoed.com/Open/PAPERS/systems.htm (accessed 31 March 2010). 
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APPENDIX C. ENGINEERING SOFTWARE FOR 
SURVIVABILITY 

The following is an excerpt from “Software Survivability: Where Safety and Security 
Converge”.85  

The software assurance86 community recognizes the achievements of software reliability and 
safety practitioners in improving the engineering of software. The job now is to determine which 
of these techniques, methods, and tools can realistically be leveraged to achieve security 
objectives in larger, more complex software programs and applications, such as those typically 
used in information systems.  

What is widely believed to be a more effective approach than “vulnerability avoidance” is the 
design of software that can recognize and avoid, resist, or tolerate most anticipated attacks, and 
can quickly and with minimal damage recover from those attacks (anticipated and unanticipated) 
that cannot be avoided, resisted, or tolerated.  

Software needs to be designed to be survivable. This has always been true of safety-critical 
software, but the ever-increasing reliance of the public and private sectors on information 
technology has engendered availability requirements for software with very low thresholds of 
tolerance for service disruption. Less tolerance of downtime means a greater imperative for 
continuous availability. Survivability is the means to that end. 

Designing for survivability enables the software to take advantage of available redundancy and 
rapid recovery features at the system level. For example, if the system supports automatic 
backups and hot-sparing of high-consequence components with automatic swap-over, the 
software’s design should be modularized in such a way that its high-consequence components 
can be decoupled and replicated on the “hot spare” platforms. 

Survivable software contains more error- and exception-handling functionality than program 
functionality. Error and exception handling can be considered to aid in survivability when the 
goal of all error and exception handling routines is to ensure that faults are handled in a way that 
minimizes software failures and prevents the software from entering an insecure state if it does 
fail.  

The software’s error and exception handling should be designed so that whenever possible, the 
software will be able to continue operating in a degraded manner (with reduction in performance, 
or stopping the execution of lower-priority functions, or accepting fewer [or no] new 
inputs/connections) until a threshold is reached that triggers an orderly, secure termination of the 
software’s execution. The software should never throw exceptions that allow it to crash and 
dump core memory, or leave its caches, temporary files, and other transient data exposed.87 

The exception handling block should include a log (which auditors can later review) to record 
when and why an exception was thrown and messaging code that can automatically send alerts to 
the system administrator when an exception requires human intervention. 
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The overall robustness of a well-designed system is partially predicated by the robustness of its 
security handling procedures at the code or programming language level. C++ and Java, for 
example, inherently provide convenient and extensible exception handling support that includes 
“catching” exceptions (faults that are not necessarily caused by flaws in externally-sourced 
inputs or violations of software-level constraints) and errors (faults that are caused by external 
inputs or constraint violations; errors may or may not trigger exceptions).  

Exception handling should be proactively designed to the greatest extent possible, through 
careful examination of code constraints as they occur during the concept and implementation 
phases of the life cycle. The developer should list all predictable faults (exceptions and errors) 
that could occur during software execution, and define how the software will handle each of 
them. In addition, address how the software will behave if confronted with an unanticipated fault 
or error. In some cases, potential faults may be preempted in the design phase, particularly if the 
software has been subjected to sufficiently comprehensive threat modeling. 

The software’s error, anomaly, and exception handling also needs to support backward and 
forward recovery—backward recovery to allow the software to detect every anomaly and error 
before that error/anomaly manifests as an exploitable vulnerability or escalates to a failure.  

The biggest challenge for secure software design is implementing the software to be able to 
detect and recognize anomalous and erroneous states in the first place. Watchdog timers that 
check for “I’m alive” signals from processes are a useful approach, with each watchdog timer set 
by a software process other than that which it is responsible for observing. Another approach is 
to check periodically the control sum of the executable code in the memory. 

Effectiveness of event—error or anomaly—monitors depends on the correctness of assumptions 
about: 

• The structure of the program being monitored; 

• The anomalies and errors that are considered possible, and those that are considered 
unlikely.  

As with all assumptions, these may be invalidated by certain conditions. 

An anomaly or error should be detected as near in time to the causal event as possible. This will 
enable isolation and diagnosis before erroneous data are able to propagate to other components. 
The number of program self-checks that can be implemented is usually limited by the availability 
of time and memory. At a minimum, there should be checks for all security-critical states, with 
risk analysis as the basis for defining the optimal contents and locations of each check.  

Monitor checks should be non-intrusive, i.e., they should not corrupt the process or data being 
checked. In addition, the developer should take particular care when coding logic for monitoring 
and checking to avoid including exploitable flaws. 

Error handling in the software should recognize and tolerate errors likely to originate with human 
mistakes, such as input mistakes. The designer needs to: 
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• Allow enough fault tolerance in the software to enable it to continue operating 
dependably in the presence of a fairly large number of user input mistakes;  

• Determine just how much information to provide in error messages by weighing the 
benefit of helping human users correct their own mistakes against the threat of 
reconnaissance attackers being able to leverage the knowledge they gain from overly-
informative error messages.  

Forward recovery measures include the use of robust data structures, the dynamic alteration of 
flow controls, and the tolerance (i.e., ignoring) of single-cycle errors. 

In most distributed software systems, components maintain a high level of interaction with each 
other. Inaction (i.e., lack of response) in a particular component for an extended period of time, 
or receipt from that component of messages that do not follow prescribed protocols, should be 
interpreted by the recipient as abnormal behavior. All components should be designed or 
retrofitted to recognize abnormal behavior patterns that indicate possible DoS attempts. This 
detection capability can be implemented within software developed from scratch, but must be 
retrofitted into acquired or reused components (e.g., by adding anomaly detection wrappers to 
monitor the component’s behavior and report detected anomalies).  

Early detection of the anomalies that are typically associated with DoS can make containment, 
graceful degradation, automatic fail-over, and other availability techniques possible to invoke 
before full DoS occurs. Anomaly awareness alone cannot prevent a widespread DoS attack, 
although it can effectively handle isolated DoS events in individual components, as long as 
detected abnormal behavior patterns correlate with anomalies that can be handled by the 
software as a whole. 

For failures that are unavoidable, the software should be designed to fail securely. The exception 
handling logic should always attempt corrective action before allowing a failure to occur. 
Thresholds in the exception handler should be set to indicate “points of no return” beyond which 
recovery from a fault, vulnerable state, or encroaching failure is recognized to be unlikely or 
infeasible. Only upon reaching this threshold, the exception handler should allow the software to 
enter a secure failure state, i.e., a failure state in which none of the software’s program data, 
control data, or other sensitive data, and no resources controlled by the software, are suddenly 
exposed, thereby minimizing any damage that might result from the failure.  

The software should be designed to retain only the bare minimum of needed state information, 
and should frequently purge data written in cache memory and temporary files on disk. These 
measures will minimize the likelihood of undesired disclosure of sensitive information, including 
information about the software itself that can be leveraged by attackers, in case of the software’s 
failure. 

Upon failing, the exception handler should return the software to the last known good state 
(which should always be more secure than the failure state). This said, in safety-critical systems, 
the imperative for fault tolerance and other measures that enable the system to avoid failure is 
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paramount: such systems have no threshold of tolerance for the delays typically involved in 
restoring software after it fails. 
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