
 1

U.S. Department of Energy Best Practices Workshop on
File Systems & Archives

San Francisco, CA
September 26-27, 2011

Position Paper

Richard Hedges
Lawrence Livermore National Laboratory

hedges1@llnl.gov

ABSTRACT / SUMMARY
This position paper discusses issues of
usability of the large parallel file systems
in the Livermore Computing Center. The
primary uses of these file systems are for
storage and access of data that is created
during the course of a simulation running
on an LC system.

INTRODUCTION
The Livermore Computing Center has multiple,
globally mounted parallel file systems in each of
its computing environments. The single biggest
issue of file system usability that we have
encountered through the years is to maintain
continuous file system responsiveness. Given the
back end storage hardware that our file systems
are provisioned with, it is easily possible for a
particularly I/O intensive application or one with
particularly inefficiently coded I/O operations to
bring the file system to an apparent halt.

The practice that we will be addressing is one of
having an ability to indentify, diagnose, analyze
and optimize the I/O quickly and effectively.

Tools applied
LMT: LMT[1] (Lustre monitoring tool) is run by
the Livermore Computing system administration
staff to monitor operation of the Lustre file
systems. It is generally used to probe and isolate
reported problems rather than to identify the
problem before or as it develops.

Having an earlier version of LMT accessible to
users proved problematic. The particular issue
was that some users would “cry wolf” when they
saw periods of heavy usage of a file system.
These notifications were generally self serving
and counter productive, so presently LMT is
available for system administrators only.
In daily operations, Lustre system administrators
may have running instances of LMT, but would
not necessarily be tracking the output, unless a
problem (such as a file system being sluggish or
unresponsive) had been reported. Due to the
architecture of Lustre, LMT leads one down an
indirect path in identifying the source of a file
system load. Load is observed on storage or
metadata servers, next correlated with client
activity, and finally (hopefully) identified with a
single users job. This detective work can take
some time, so it can be a challenge to do all of the
tracing while the offending code instance is still
active.
Darshan, strace: Since a single application
program with inefficiently coded I/O operations
can have center wide negative impact on parallel
file system function and usability, It is critical to
be able understand the sequence of I/O operations
that a code is generating and to understand the
effects of those on file system behavior.

For some time we have been in the business of
profiling file system I/O for selected applications
to diagnose and resolve performance problems
causing center wide impact. Initially profile data
was extracted exclusively from strace [2], and

application runs and analyzed essentially by
manually reviewing the data.

We generally trace with the options “strace -tt -
etrace=file,read,write,close,lseek,ioctl” which
provides time stamped system call traces to
standard error for the I/O related system calls
identified. We can collect the system call traces
on a per process basis. It is possible to trace a
running process, or to incorporate the tracing in a
job run script.

More recently we also use Darshan[3] from
Argonne National Laboratory. Darshan is a
petascale I/O characterization tool. Darshan is
designed to capture an accurate picture of
application I/O behavior, including properties
such as patterns of access within files, with
minimum overhead. Darshan includes scripting
to analyze and aggregate the data.

A code can be instrumented with Darshan by
utilizing wrapper scripts, or by interposing the
libraries using LD_PRELOAD. Being as
lightweight as it is makes it suitable for full time
deployment, although we at LC do not apply it in
that manner.

These methods are available to users, but have
primarily been applied by an LC staff member on
behalf of a user or application team. Note that
these methods are also applied in the case where
the performance issues impact the user’s
productivity, even if the center-wide impact is
minimal.

User training and documentation
Training specific to application I/O performance
issues is summarized in two documents
maintained on the clusters in /usr/local/docs: (1)
Lustre.basics and (2) Lustre.striping. We have
also included I/O specific discussions in user
oriented system status meetings on a regular
basis. Consulting is available, and is offered on a
general and on an intervention basis.

Let me interject a personal comment here related
to user training, because I am eager to see if
others at the workshop have observed similar.
Relative to other parts of parts of a complex HPC
system (e.g. processor architecture, code
parallelization) I find that our user community
seems generally more resistant to learning about
the I/O architecture and how to use and code to it
effectively. I suspect that this is a historically
bias that the CPU processing is the valuable
resource and the I/O bandwidth and storage
capacity are free. We at the center may have
reinforced this, if subtly, by our accounting and
allocation policies.

CONCLUSIONS
For the key initial step of identifying a code or
user who, by their I/O actions are impacting the
user, we have a workable tool. LMT provides an
path, albeit indirect to associate system load with
a particular root cause.

The strace and Darshan offer approaches (some
overlapping and some complementary) to analyze
the I/O execution of an HPC application. They
allow one to identify and localize a problem in a
code.
We have an issue on the user training side. Some
code teams have taken on the challenge of
understanding good application I/O practices.
Others have been motivated only when I/O
performance was an insurmountable hurdle.

REFERENCES
1. LMT github site

https://github.com/chaos/lmt/wiki
2. strace: stardard Linux command to “trace

system calls and signals” see “man strace”
3. Darshan: Petascale I/O Characterization Tool

http://www.mcs.anl.gov/research/projects/dars
han/

