

PSI – A High Performance File Transfer User Interface

Mark A. Roschke

High Performance Computing Division,
Los Alamos National Laboratory

mar@lanl.gov

C. David Sherrill

High Performance Computing Division,
Los Alamos National Laboratory

dsherril@lanl.gov

Abstract

Transferring and maintaining large datasets requires
parallel processing of both data and metadata for
timely execution. This paper describes the work in
progress to use various processing techniques,
including multi-threading of data and metadata
operations, distributed processing, aggregation, and
conditional processing to achieve increased transfer
performance for large datasets, as well as increased
rates for metadata queries and updates.

1. Introduction

Ever-increasing computing capabilities result in ever-
increasing data sets to be transferred. Such data sets
can consist primarily of large files, many small files, or
both. Transferring data sets with large files requires an
emphasis on parallel file transfer, utilizing as much
bandwidth as possible. And it is in this area that the
majority of data parallel transfer development has
occurred. But, it is no longer rare for a user to generate
data sets of 100,000 to one million files. And when
data sets reach this size, it is imperative that support be
provided for high performance metadata operations,
not only in support of file transfer, but also to support
browsing and maintaining the data set.

2. Overview of PSI

The Parallel Storage Interface (PSI) is a data transfer
user interface designed to provide high speed transfer
for large data sets, with a special emphasis on utilizing
as many resources as possible for a single user request.
Developed by the authors, PSI is the main user
interface to the High Performance Storage System

(HPSS) at Los Alamos National Laboratory. This
paper describes the efforts to provide a full-featured
data transfers capability for archival transfer, local
transfer, and wide area host-to-host transfer, providing
both high-speed data transfer as well as high-speed
metadata processing.

PSI uses a parallel workflow model for processing
both data and metadata. Work is parallelized and
scheduled on available server and client resources
automatically, using a priority and resource-based
approach. Optimization is performed automatically,
including areas such as parallelization, optimized tape
transfer, load leveling, etc.

3. Unix syntax and Semantics

PSI utilizes UNIX-like syntax and semantics. For
example, the following commands are available for
data transfer and manipulation of file attributes: cd,
chmod, chgrp, cp, du, f ind, grep, ls , mkdir,
mv, rm, rmdir, and scp.

4. Multi-mode Operation

PSI offers three modes of operation, providing the
same syntax, semantics, and look and feel for the three
most frequently used data transfer situations, which are
1) local transfer, 2) archival transfer, and 3) host-to-
host transfer. The particular interface command
determines the context of the specified commands. For
example,

sh cp –R a b copy files locally
psiloc cp –R a b parallel copy locally
psi2ccc cp –R a b parallel copy on cluster ccc
psi cp –R a b parallel copy in the archive

This approach provides a consistent look and feel,
allowing the user to move between the 3 major transfer
situations, eliminating the time necessary to learn the
command set for each situation.

5. Automatic Optimization

The general design approach for PSI is that the user
simply specifies the files to be operated on, PSI
determines the resources available to the command,
and then executes the command, with all optimization
being performed automatically, including such features
as adjusting all types of thread counts dynamically,
optimizing the order of any data transfers to/from tape,
assignment of operations across multiple hosts
(including load leveling), and splitting large transfers
across hosts when appropriate.

To support automatic optimization, all activity within
PSI is controlled using a priority-based resource
management scheme, limiting the amount of
bandwidth and memory that each type of activity can
consume. Scheduling of activities such as file transfers
are performed via an internal job scheduler, which
dispatches activities across available hosts in an
optimal order, load leveling all activities as necessary.

6. Conditional Transfers

To address occurrences of interrupted transfers as well
as that of newly arriving (or updated) data within a
data set, PSI can scan both the input tree and output
tree, examining file attributes to determine which files
need to be transferred. This feature alone can routinely
save hours of time that would be spent on re-
transferring the entire tree.

7. Parallel Archival Tarring Option

When transferring to the archive, the user can select
the PSI tar option, which automatically utilizes parallel
tar transfers to/from the archive. The parallel tar
capability in PSI typically constructs one or more tar
files per directory, preserving the original tree
structure. Large files are normally transferred un-tarred
to the archive. Multiple tar processes are load leveled
across available hosts, providing scalable multi-host
performance, even for small files.

The archive namespace is extended into the tar files
present, utilizing the index file that is stored with each
tar file. This namespace extension prevents the archive
from becoming a large black box of data. The user can

browse through the original tree, and execute such
commands as ls , f ind, grep, rm , and scp with
references to files within the tar files, and can also
utilize globbing (i.e. wild cards) in such references.
Conditional transfers are also supported, so that newly
arrived files can be placed within new tar files in a
directory. In addition, commands such as scp,
chmod, grep, ls , and rm are specially aware of the
tar files, and can take advantage of operating on whole
tar files when feasible.

8. Techniques to Increase Performance

The general approach chosen involves the use of
parallel data and metadata processing, automatic
optimized file aggregation and de-aggregation, and
conditional operations when feasible. Combining these
three features provides a variety of performance
increases. For example, multi-threading to a degree of
40 threads might increase performance by a factor of
30, while operating on a file aggregate of 1000 files
can provide a performance boost of up to 300.
Conditional operations can provide a factor of 20 or so.
By combining these three features, performance gains
of over 1,000 have been observed, as outlined below.

9. Multiphase Parallel Work Flow

To facilitate efficient control of the various steps
required to execute user requests in a parallel fashion,
For example, tasks are organized into phases, e.g. 1)
stat source files, 2) stat destination files, 3) transfer
files. Work progresses though each phase. Each phase
can consist of many threads, each requiring different
resources. Achieving high performance in processing
metadata requires a reasonably high degree of
parallelism; typical thread counts for all three phases is
100 to 200, depending upon the mix of metadata and
file transfer operations being performed.

 10. Areas of Performance Increase

Work at increasing performance has fallen in two
general areas – increasing parallelism, and decreasing
latency with the latter area receiving the most effort.
Increasing parallelism generally falls in the predictable
categories of more threads, and more hosts,
with some miscellaneous optimization applied to areas
such as when to transfer large files across nodes, etc.

Effort to decrease latency has been largely in the area
of various types of aggregation, namely 1) data
aggregation, 2) control aggregates, 3) metadata query
aggregates, and 4) metadata update aggregates.

Metadata query work has involved experiments with
striping directory queries across multiple hosts, with an
eye toward support of massive directories (directories
with greater than 50,000 files).

Since aggregation is largely connected with latency,
the benefits from aggregation tend to be shared across
the areas of faster scheduling, more scalability, and
faster WAN operations.

11. Conclusion

Combining the techniques of multi-threaded
processing of data and metadata with the concept of
small file aggregation can result in significant
performance increases. These increases can be further
improved by adding techniques such as conditional
updates or conditional file transfers. Performance
increases above factors of 1000 have been observed. In
addition, using user-generated aggregates can result in
significant decreases in archival system metadata.

12. Performance Results

The following results were obtained on a cluster of 4 client nodes connected to to a Panasas file system,
For various files sizes and commands.

 Local Mode

 cp cp cp conditional chmod find rm
 1KB 10MB 1GB transfer
 Mode (files/s) (MB/s) (MB/s) (files/s) (Files/s) (Files/s) (Files/s)

 sh 32 15 55 - 47 312 247
 psi (local) 1,813 398 431 2364 2,090 1,743 2,999

Also, in a recent large scale test on 16 nodes connected to a Panasas file system, 295 TB of data (consisting of 967,000
files) were copied at an average rate of 2.85 GB/sec.

The following results were obtained on a cluster of 4 nodes, from a Panasas file system to Los Alamos HPSS.

Archive Mode (HPSS)

 cp cp cp cond chmod find rm
 1KB 10MB 1GB
 Mode (Files/s) (MB/s) (MB/s) (files/s) (Files/s) (Files/s) (Files/s)

 psi (HPSS) 80 1,071 580 102 295 599 155
 psi (HPSS, TAR) 1,139 256 269 2,365 31,188 2,999 15,210

The following results were obtained on a cluster of 4 nodes, from a local Panasas file system to a remote Lustre file
system, with a round trip time of 38 ms (Los Alamos, NM to Livermore, CA)

Host-to-Host Mode

 cp cp cp cond chmod find rm
 1KB 10MB 1GB
 Mode (Files/s) (MB/s) (MB/s) (files/s) (Files/s) (Files/s) (Files/s)

 psi (h2h) 1,933 423 480 2,396 2,433 3,012 229

