
U.S. Department of Energy Best Practices Workshop on

File Systems & Archives

San Francisco, CA

September 26-27, 2011

Position Paper

HPC Data Storage Strategy at the UK Atomic Weapons Establishment (AWE)

Mark Roberts
AWE High Performance Computing

mark.roberts@awe.co.uk

Paul Tomlinson
AWE High Performance Computing

paul.tomlinson@awe.co.uk

ABSTRACT / SUMMARY

AWE has adopted a resilient and globally
accessible storage model to support
concurrent desktop and compute cluster
access. We now provide a global
persistent multi-tiered storage which has
enhanced usability and reliability.
Increasing pressure on budgets has
recently focused efforts to reduce and
consolidate the directly-attached parallel
cluster file system into several global
scratch file systems cross mounted on all
compute clusters.

INTRODUCTION
Historically, AWE has focused on one or more
compute clusters, each with its own local parallel
scratch file system and global persistent storage
provided by commodity Network Attached
Storage (NAS) filers or in-house Network File
System (NFS) servers.

Following a major facility issue a few years
earlier, which resulted in the sole persistent data
store, based on IBMs General Parallel File
System (GPFS), being corrupted and had to be
restored (very slowly) from backup, it was
decided to upgrade to a resilient GPFS cluster.
This was designed to provide multi-site
resilience, protecting from loss of either site.

This has allowed us to maintain native
multicluster GPFS access to the numerous cluster

log-in nodes, visualisation clusters, and secure
NFSv4 access direct to the desktop.

COMMON ENVIRONMENT
A common name space, providing a consistent
view of file systems on desktops, compute and
visualization clusters, helps users locate their data
and has encouraged well structured work flow
with respect to makefiles, shared libraries and
code areas.

This, combined with other common environment
features, has aided the trend towards more local
prototyping, with easier scaling up onto larger
platforms.

DESKTOP ENHANCEMENT
The Hierarchical Storage Managed (HSM) file
systems are now exposed to desktops, running
file managers and search utilities, that scan, index
and try to determine type by content, all
potentially triggering unwanted retrievals, which
can block interactive access until the recall from
tape completes.

To mitigate this, we modified the KDE3 file
manager and GNU utilities (ls, find, stat, file) to
be aware that a file is migrated based on the naive
concept that a migrated file has a non-zero file
size with zero data blocks. Users are given visual
cues with syntax highlighting or icon overlays,
along with extra options for handling such files.
Preview operations that would generate multiple
recalls are skipped. Obtaining the migration state

1

via an API or extended attributes that could
propagate through software and network
protocols would be preferable. However the
simple approach has worked well in our
environment.

FILESYSTEM USAGE TRENDS
For many years, we recorded per-user GPFS file
system usage with a simple POSIX find command
in conjunction with the HSM dsmls command.
This was highly inefficient, taking over 24 hours
to complete a scan, as well as adding unnecessary
CPU and I/O load on the Tivoli Storage Manager
(TSM) server.

We now utilize the GPFS Information Lifecycle
Management (ILM) interface to scan the file
systems and output records containing the
extended information such as name, size, access,
modify and create time. The resulting data file is
processed and imported into a MySQL database.
This allows for fine granular analysis at the user
and file system level day by day or over a time
period.

Currently, with 35 million objects, the new
method takes under 20 minutes. We believe that
providing such granular information influences
users' data storage behavior for the better, and lets
us quickly identify unreasonable or unintended
usage when problems occur. It also provides
long-term trend information to aid future file
system capacity planning and procurement.

We have also engaged with Lustre developers to
see if future Lustre releases can incorporate a
similar capability.

DECOUPLED PARALLEL FILESYSTEMS
Traditionally, as part of a compute cluster
procurement, we purchased storage for a
dedicated parallel file system to provide the
localised fast bandwidth required by codes.

With the potential of cluster lifetimes becoming
shorter due to the the ever increasing pace of
technology releases, the cost of the disk
infrastructure is now becoming a factor. Once our
clusters were decommissioned the disk was also

removed and disposed of. With a recent
capability cluster procurement the local parallel
file system hardware accounted for approximately
15% of the total expenditure. The demand for
storage is increasing, so as the total of memory
and cores on clusters the associated storage costs
may have a larger impact.

We have decided to “decouple” the local parallel
file system which allows the storage to be used by
multiple clusters. This gives the freedom to either
use the cost reduction by increasing the compute
size or directing the saving elsewhere. One
immediate advantage of no directly attached
storage is more rapid initial cluster deployment
and, possibly, regular scheduled maintenance
without affecting access to the data via other
clusters.

The community gain improved useability by not
having to transfer the data between the local
parallel file systems on the clusters and then to
persistent storage.

By extending the concept of resilience to global
scratch with a global scratch file system cluster in
each facility (three planned) we can now factor in
scheduled downtime and upgrades to a chosen
global scratch file system cluster more
effectively.

DATA AND FS AWARE SCHEDULING
It is our intention that each compute cluster
should use by default the global scratch file
system in its local facility.

Users may, however, wish to use another global
scratch file system in a different building or use
the “local” global scratch in conjunction with it.
In order to prevent jobs failing due to an
unavailable global scratch, we are investigating
the concept of storage as a consumable resource
in the same manner as a node or cores is used
today.

By integrating awareness of global storage into
the scheduler/resource manager, jobs may be
prevented from failing prematurely. Also when
global scratch or persistent storage clusters are

2

scheduled for maintenance then scheduler system
reservations can be placed on the file system
preventing jobs from being dispatched, if the job
requested that file system as a resource.

DATA EXPLOSION

With an increasing amount of scratch, persistent
storage and upgraded network links, it becomes
relatively easy for the user to copy everything
everywhere. This leads to wasted bandwidth, disk
storage and tape backups due to duplicated data.
File system de-duplication on persistent storage
may be possible but ultimately undesirable.

With early MPP clusters it was often quicker to
move data from disk or recall from off-line
storage than regenerate the data. With the large
fast clusters available today it may, in some
cases, be quicker and cheaper to save network,
disk, and tape resources by regenerating data.
This is ultimately a decision that only the user is
best placed to make but having to weight up the
impact on QA reproducibility and provenance.

Existing compute cluster parallel file systems
were designed with the ability to hold four times
the amount of system memory from a OS
initiated checkpoint. The majority of the
mainstream codes are now using restart dumps
generated via an in-house I/O library. Code users
can then choose whether to perform a full state
restart or focus on only saving selected data
within the run for analysis. Intelligent software-
based restarts greatly reduce the amount and
bandwidth required and could allow considerable
cost savings, but non-restartable third party codes
remain a barrier.

CONCLUSION
Implementation of a fast, secure, exported and
resilient global parallel file system for persistent
and archive storage has proved invaluable for
unifying compute resources at all scales.
However the ease of accessibility has created
some additional problems and raised user
expectations, requiring adaptation of the user
interface. We are now exploring a similar

approach for efficient global scratch storage.

3

