
 1

U.S. Department of Energy Best Practices Workshop on
File Systems & Archives

San Francisco, CA
September 26-27, 2011

Andrew Uselton

NERSC/LBL
acuselton@lbl.gov

Jason Hick
NERSC/LBL
jhick@lbl.gov

ABSTRACT / SUMMARY
This position paper addresses the
business of storage systems
and practices related to planning for
future systems (I-1A) and establishing
bandwidth requirements (I-1B), with some
discussion also relating to the
administration of storage systems and
the monitoring of specific metrics (II-2A).
The best practice is to balance I/O with
compute capability.
We present a quantitative characterization
of “HPC and I/O system balance” by
examining the relative costs of compute
resources and I/O resources on the one
hand and the relative impact of compute
and I/O activities on the other.

INTRODUCTION
An HPC system with too little I/O infrastructure
to support its workload could leave much of the
compute resource idle as it waits for I/O
operations to complete. The idle compute
resource represents an opportunity cost in that it
may have no other useful work to do during the
wait.

BACKGROUND
One study [2] suggests that memory capacity is
the key determinant of necessary I/O bandwidth
and capacity. Figure 1 presents a traditional
guideline for balancing I/O.

The relationship between performance and
memory comes from the need to flush the

contents of memory to persistent local storage in
a combination of reasonable time and cost.

Figure 1. Conventional HPC I/O Planning Guidelines

Additional I/O resources provide diminishing
returns, so there is a point of balance at which
bandwidth is “just enough”, and in this case the
heuristic is to move all of memory in about 1000
seconds.

Figure 2. Peak bandwidth to system memory

Figure 2 presents this heuristic as applied to
several HPC systems. By that metric, systems
with a value over 1.0 have over-provisioned I/O

subsystems relative to system memory capacity.
A subjective review of such systems reveals that
users are happy with the I/O bandwidth they
deliver.

The purpose of this paper is to propose an
alternative characterization of balance using a
cost-based model in conjunction with the
compute and I/O workloads of the HPC system.
As a starting point, this discussion abstracts away
much of the complexity to arrive at some core
ideas.

SYSTEM BALANCE
As a first simplifying assumption, suppose that
the cost of an HPC system is composed entirely
of the budget for the compute capability and the
budget for the I/O capability. Next, suppose that
the work produced by an HPC system is
measured as the number of jobs completed
weighted by the size of each job in two
dimensions: the number of node-seconds used in
the computation and the number of node-seconds
used in I/O.

Further, assume that the aggregate compute
capability is near linear in the cost of the of
compute nodes:

€

C(n) = Mn × n

where Mn is the marginal cost of nodes. Similarly,
assume the aggregate I/O capability (measured as
its peak rate) is near linear in the cost of the I/O
infrastructure:

€

I r()= Mr × r

where Mr is the marginal cost of adding a unit of
bandwidth r.

Now let the utilization U of the HPC system be
given by the fraction of node-seconds spent on
compute activity, given a particular workload.
Our characterization of "system balance", given
n and r, is given by:

€

B =
U
1−U()

⎛

⎝
⎜

⎞

⎠
⎟
I(r)
C(n)
⎛

⎝
⎜

⎞

⎠
⎟

Our claim is that at B = 1, the system is in
balance in that it achieves the maximum amount

of workload per dollar spent. As an example, if
you spend 10% of your HPC system budget on

I/O infrastructure (

€

I(r)
C(n)

≅ 0.1), then the nodes

should be spending 10% of their time on I/O, and

the rest on computation (

€

1−U
U

≅ 0.1).

This is a relatively intuitive idea given the
simplifying assumptions, but it begs the question,
"What is B on my system, given its workload?"
Those who design and purchase HPC systems are
very familiar with the total cost and the fraction
spent on I/O infrastructure. On the other hand, it
is not at all clear what the value of U is. It will
certainly be different at different times and for
different workloads. We propose that monitoring
the jobs and I/O on the system for any given day's
activity and for longer intervals will yield the
value of U.

CHALLENGES
Some system designs and I/O strategies attempt
to improve I/O performance by departing from
this simple model. For example, a strategy that
overlaps computation and I/O will yield a higher
utilization. In that case it becomes important to
estimate both the expected impact and the extent
to which the strategy is implemented in practice.
If a strategy can entirely "hide" I/O activity but
only affects 10% of the workload, then the
simplified model is still close to correct.

The model has plenty of room for improvement.
For example, the cost model does not need to as
simple as presented. There may be fixed costs and
nonlinearities, and the model could incorporate
them without difficulty. The model can also
include other aspects of HPC system architecture,
for example, adding node-seconds spent in (node
to node) communication. In some cases that
communication will compete for bandwidth with
the I/O requirements, leading to additional
complexities.

CASE STUDY
The Carver IBM Dataplex cluster at NERSC was
provisioned with approximately 15% of its
budget dedicated to I/O infrastructure. The

 3

system has 30 TB of memory suggesting a target
bandwidth to storage of 30 GB/s using the
heuristic from the background discussion.
Carver’s measured bandwidth is about 25 GB/s,
so it is designed to be at about 83% of that target.
Carver runs the Integrated Performance
Monitoring (IPM) library [3] with every
scheduled job. Each job produces a report at the
end of its execution giving the time spent in
computation, the time spent in I/O, and the
amount of data moved (among other quantities).
IPM provides a comprehensive profile of
compute and I/O activity for a given interval.
From that profile it is possible to directly
calculate the utilization. For example, in June
2011

€

U ≅ 0.94 . The balance factor for the actual
workload is around 2.5. By this measure, the
system’s balance favors I/O and could handle a
heavier load.

CORRELATING I/O ACTIVITY WITH JOBS
Most HPC systems do not have IPM or other
direct measures of the utilization. Without that
information we do not know what balance has
been achieved in practice after having applied the
heuristics from Figure 1. An alternative strategy
is under development at NERSC that infers the
utilization U from server-side I/O monitoring
with the Lustre Monitoring Tool (LMT) [4].
Server-side data is anonymous with respect to the
nodes that generate the I/O. Nevertheless, it is
often possible to infer the job from the I/O
pattern. When that can be done comprehensively
it will yield the utilization as before, and therefore
give a quantitative gauge of the balance.

On NERSC’s Franklin Cray XT4 there are
commonly more than one hundred jobs running at
a given time, and the I/O workload resulting from
that compute workload is potentially composed of
I/O from many jobs simultaneously. Often, an
application runs many times repeating the same
I/O pattern each time. From that collection of jobs
(call it a job class) we calculate the average I/O
behavior for the application, which is an
approximation of its expected behavior in
isolation from other jobs. The individual
calculated behavior of each of the whole suite of

applications provides the initial estimate for the
behavior of the system as a whole, and the
estimates can be iteratively refined via a
generalized linear regression. This is a
computationally expensive task but straight
forward, in principle.

As an example, we examine the IOR [5] file
system benchmark, which runs as a regularly
scheduled test of the Franklin scratch file
systems. 175 such tests were run in July 2011,
and the system job log records the start and stop
time of each job along with the number of nodes
used. The IOR application runs using the same
parameters in order to provide a repeatable
health-check of the file system. Each job writes
4GB to the file system from each of 64 tasks on
16 nodes. It then reads that data back in. Jobs
generally run for 150 to 200 seconds, but can run
much longer when the file system is occupied
with other I/O. The jobs are submitted to an I/O-
oriented scheduling queue, which (voluntarily)
serializes I/O intensive applications.

LMT records the bytes written and bytes read for
each server every five seconds. That data shows
the I/O resulting from the IOR jobs and anything
else running at the same time. In order to
calculate the average behavior we “warp”
(artificially lengthen or shorten) the sequence of
LMT observations for each job so that they fit the
same length-scale – chosen as the median job run
length. A standard linear regression on that data
set provides the calculated average behavior.

Figure 3.

Figure 3 displays the result of carrying out this
analysis. The x-axis is the artificial time scale –
arbitrarily set to 0 to 1 – to which each series of
observations is warped. The y-axis gives the
aggregate data rate (blues for writes and red for
reads) of the application over the course of the
idealized run. The single dark line of each color is
the calculated average behavior of the
application. Shown in a lighter shade is the
collection of 175 separate contributing runs as
they appear after being warped. Most of the
contributing runs follow the average behavior
closely, and demonstrate that the IOR test was
running without much interference. A few traces
depart wildly from the average and it is those runs
that were in contention for I/O resources. Once
we calculate the idealized average behavior all of
the applications with significant amount of I/O,
those idealizations become initial estimates for
the coefficients in a big matrix implementing the
generalized linear regression. For a file system
that does not have a lot of I/O contention the
initial estimates will be close to their final values
and the computation will converge quickly. In
other cases the computation may take significant
resources. The end result is a quantified, job-by-
job measure for the impact of the application on
the I/O system from which we recover the
utilization U and therefore the balance B.

CONCLUSIONS
The HPC community has developed a set of
heuristics to guide the design of HPC systems so
that the I/O capability is matched to the users’
needs. In one case where the heuristic was
applied in an effort to make a system I/O-friendly,
a comprehensive characterization of balance
using our metric showed that the system
deployment was successful. Our measure for
balance, B = 2.5, says that the system is cost
effective for an even heavier I/O load than was
observed.

The proposed job-log-and-LMT analysis extends
the applicability of our metric to cases where
direct observation of the utilization U is
impossible or impractical. That characterization
can be combined with system cost details to

establish a rigorous evaluation of the balance of
the system.

It is always difficult to argue that past
performance is guide to future behavior. When
planning for a new HPC system the application
behavior produced in this analysis must be
combined with theoretical considerations for how
the new system might behave differently.
Nevertheless, the application characterizations
and the underlying model that produced them are
a valuable starting point to be used during the
procurement of new systems.

Once deployed, a new system needs data
acquisition systems like IPM, Darchan [6], and
LMT in order to evaluate the system balance
actually achieved.

ACKNOWLEDGEMENTS
We would like to thank Dr. Anthony Gamst of
UC San Diego for discussion, explanations, and
guidance of the generalized linear regression
techniques alluded to in this paper.

REFERENCES
1. NERSC Storage Policies, produced by the

Storage Policies Working Group, 2010.
2. J. Shoopman, LLNL internal study on memory

capacity to archive data generated 2008-2009.
3. D. Skinner, Integrated Performance

Monitoring: A Portable Profiling
Infrastructure for Parallel Applications. Proc.
ISC 2005, International Supercomputing
Conference, Heidelberg, Germany, 2005

4. A. Uselton, Deploying Server-side File System
Monitoring at NERSC, Cray User Group
Conference, Atlanta, GA, 2009

5. H. Shan, K. Antypas, J. Shalf, Characterizing
and Predicting the I/O Performance of HPC
Applications Using a Parameterized Synthetic
Benchmark. Proc. SuperComputing 2008,
Austin, TX, 2008

6. P. Carns, R. Latham, R. Ross, K. Iskara, S.
Lang, K. Riley, 24/7 characterization of
petascale I/O workloads. Proc. Of 2009
Workshop on Interfaces and Architectures for
Scientific Data Storage, Sep. 2009.

 5

