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ABSTRACT / SUMMARY 
This position paper addresses the 
business of storage systems 
and practices related to planning for 
future systems (I-1A) and establishing 
bandwidth requirements (I-1B), with some 
discussion also relating to the 
administration of storage systems and 
the monitoring of specific metrics (II-2A).  
The best practice is to balance I/O with 
compute capability.  
We present a quantitative characterization 
of “HPC and I/O system balance” by 
examining the relative costs of compute 
resources and I/O resources on the one 
hand and the relative impact of compute 
and I/O activities on the other.  
 

INTRODUCTION 
An HPC system with too little I/O infrastructure 
to support its workload could leave much of the 
compute resource idle as it waits for I/O 
operations to complete. The idle compute 
resource represents an opportunity cost in that it 
may have no other useful work to do during the 
wait.  

BACKGROUND 
One study [2] suggests that memory capacity is 
the key determinant of necessary I/O bandwidth 
and capacity. Figure 1 presents a traditional 
guideline for balancing I/O. 

The relationship between performance and 
memory comes from the need to flush the 

contents of memory to persistent local storage in 
a combination of reasonable time and cost. 

 
Figure 1. Conventional HPC I/O Planning Guidelines 

Additional I/O resources provide diminishing 
returns, so there is a point of balance at which 
bandwidth is “just enough”, and in this case the 
heuristic is to move all of memory in about 1000 
seconds. 

 
Figure 2. Peak bandwidth to system memory 

Figure 2 presents this heuristic as applied to 
several HPC systems. By that metric, systems 
with a value over 1.0 have over-provisioned I/O 



 

subsystems relative to system memory capacity. 
A subjective review of such systems reveals that 
users are happy with the I/O bandwidth they 
deliver. 

The purpose of this paper is to propose an 
alternative characterization of balance using a 
cost-based model in conjunction with the 
compute and I/O workloads of the HPC system. 
As a starting point, this discussion abstracts away 
much of the complexity to arrive at some core 
ideas.   

SYSTEM BALANCE 
As a first simplifying assumption, suppose that 
the cost of an HPC system is composed entirely 
of the budget for the compute capability and the 
budget for the I/O capability. Next, suppose that 
the work produced by an HPC system is 
measured as the number of jobs completed 
weighted by the size of each job in two 
dimensions: the number of node-seconds used in 
the computation and the number of node-seconds 
used in I/O. 

Further, assume that the aggregate compute 
capability is near linear in the cost of the of 
compute nodes:  

€ 

C(n) = Mn × n  

where Mn is the marginal cost of nodes. Similarly, 
assume the aggregate I/O capability (measured as 
its peak rate) is near linear in the cost of the I/O 
infrastructure: 

€ 

I r( )= Mr × r  

where Mr is the marginal cost of adding a unit of 
bandwidth r. 

Now let the utilization U of the HPC system be 
given by the fraction of node-seconds spent on 
compute activity, given a particular workload. 
Our characterization of  "system balance", given 
n and r, is given by: 
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Our claim is that at B = 1, the system is in 
balance in that it achieves the maximum amount 

of workload per dollar spent.  As an example, if 
you spend 10% of your HPC system budget on 

I/O infrastructure (

€ 

I(r)
C(n)

≅ 0.1), then the nodes 

should be spending 10% of their time on I/O, and 

the rest on computation (

€ 

1−U
U

≅ 0.1). 

This is a relatively intuitive idea given the 
simplifying assumptions, but it begs the question, 
"What is B on my system, given its workload?" 
Those who design and purchase HPC systems are 
very familiar with the total cost and the fraction 
spent on I/O infrastructure. On the other hand, it 
is not at all clear what the value of U is. It will 
certainly be different at different times and for 
different workloads. We propose that monitoring 
the jobs and I/O on the system for any given day's 
activity and for longer intervals will yield the 
value of U. 

CHALLENGES 
Some system designs and I/O strategies attempt 
to improve I/O performance by departing from 
this simple model. For example, a strategy that 
overlaps computation and I/O will yield a higher 
utilization. In that case it becomes important to 
estimate both the expected impact and the extent 
to which the strategy is implemented in practice. 
If a strategy can entirely "hide" I/O activity but 
only affects 10% of the workload, then the 
simplified model is still close to correct. 

The model has plenty of room for improvement. 
For example, the cost model does not need to as 
simple as presented. There may be fixed costs and 
nonlinearities, and the model could incorporate 
them without difficulty. The model can also 
include other aspects of HPC system architecture, 
for example, adding node-seconds spent in (node 
to node) communication. In some cases that 
communication will compete for bandwidth with 
the I/O requirements, leading to additional 
complexities. 

CASE STUDY 
The Carver IBM Dataplex cluster at NERSC was 
provisioned with approximately 15% of its 
budget dedicated to I/O infrastructure. The 
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system has 30 TB of memory suggesting a target 
bandwidth to storage of 30 GB/s using the 
heuristic from the background discussion. 
Carver’s measured bandwidth is about 25 GB/s, 
so it is designed to be at about 83% of that target. 
Carver runs the Integrated Performance 
Monitoring (IPM) library [3] with every 
scheduled job. Each job produces a report at the 
end of its execution giving the time spent in 
computation, the time spent in I/O, and the 
amount of data moved (among other quantities). 
IPM provides a comprehensive profile of 
compute and I/O activity for a given interval. 
From that profile it is possible to directly 
calculate the utilization. For example, in June 
2011 

€ 

U ≅ 0.94 . The balance factor for the actual 
workload is around 2.5.  By this measure, the 
system’s balance favors I/O and could handle a 
heavier load. 

CORRELATING I/O ACTIVITY WITH JOBS 
Most HPC systems do not have IPM or other 
direct measures of the utilization. Without that 
information we do not know what balance has 
been achieved in practice after having applied the 
heuristics from Figure 1. An alternative strategy 
is under development at NERSC that infers the 
utilization U from server-side I/O monitoring 
with the Lustre Monitoring Tool (LMT) [4]. 
Server-side data is anonymous with respect to the 
nodes that generate the I/O. Nevertheless, it is 
often possible to infer the job from the I/O 
pattern. When that can be done comprehensively 
it will yield the utilization as before, and therefore 
give a quantitative gauge of the balance.  

On NERSC’s Franklin Cray XT4 there are 
commonly more than one hundred jobs running at 
a given time, and the I/O workload resulting from 
that compute workload is potentially composed of 
I/O from many jobs simultaneously. Often, an 
application runs many times repeating the same 
I/O pattern each time. From that collection of jobs 
(call it a job class) we calculate the average I/O 
behavior for the application, which is an 
approximation of its expected behavior in 
isolation from other jobs. The individual 
calculated behavior of each of the whole suite of 

applications provides the initial estimate for the 
behavior of the system as a whole, and the 
estimates can be iteratively refined via a 
generalized linear regression. This is a 
computationally expensive task but straight 
forward, in principle.  

As an example, we examine the IOR [5] file 
system benchmark, which runs as a regularly 
scheduled test of the Franklin scratch file 
systems. 175 such tests were run in July 2011, 
and the system job log records the start and stop 
time of each job along with the number of nodes 
used. The IOR application runs using the same 
parameters in order to provide a repeatable 
health-check of the file system. Each job writes 
4GB to the file system from each of 64 tasks on 
16 nodes. It then reads that data back in. Jobs 
generally run for 150 to 200 seconds, but can run 
much longer when the file system is occupied 
with other I/O. The jobs are submitted to an I/O-
oriented scheduling queue, which (voluntarily) 
serializes I/O intensive applications.  

LMT records the bytes written and bytes read for 
each server every five seconds. That data shows 
the I/O resulting from the IOR jobs and anything 
else running at the same time. In order to 
calculate the average behavior we “warp” 
(artificially lengthen or shorten) the sequence of 
LMT observations for each job so that they fit the 
same length-scale – chosen as the median job run 
length. A standard linear regression on that data 
set provides the calculated average behavior.   

Figure 3. 



 

Figure 3 displays the result of carrying out this 
analysis. The x-axis is the artificial time scale – 
arbitrarily set to 0 to 1 – to which each series of 
observations is warped. The y-axis gives the 
aggregate data rate (blues for writes and red for 
reads) of the application over the course of the 
idealized run. The single dark line of each color is 
the calculated average behavior of the 
application. Shown in a lighter shade is the 
collection of 175 separate contributing runs as 
they appear after being warped. Most of the 
contributing runs follow the average behavior 
closely, and demonstrate that the IOR test was 
running without much interference. A few traces 
depart wildly from the average and it is those runs 
that were in contention for I/O resources.  Once 
we calculate the idealized average behavior all of 
the applications with significant amount of I/O, 
those idealizations become initial estimates for 
the coefficients in a big matrix implementing the 
generalized linear regression. For a file system 
that does not have a lot of I/O contention the 
initial estimates will be close to their final values 
and the computation will converge quickly. In 
other cases the computation may take significant 
resources. The end result is a quantified, job-by-
job measure for the impact of the application on 
the I/O system from which we recover the 
utilization U and therefore the balance B. 

CONCLUSIONS 
The HPC community has developed a set of 
heuristics to guide the design of HPC systems so 
that the I/O capability is matched to the users’ 
needs. In one case where the heuristic was 
applied in an effort to make a system I/O-friendly, 
a comprehensive characterization of balance 
using our metric showed that the system 
deployment was successful. Our measure for 
balance, B = 2.5, says that the system is cost 
effective for an even heavier I/O load than was 
observed. 

The proposed job-log-and-LMT analysis extends 
the applicability of our metric to cases where 
direct observation of the utilization U is 
impossible or impractical. That characterization 
can be combined with system cost details to 

establish a rigorous evaluation of the balance of 
the system.  

It is always difficult to argue that past 
performance is guide to future behavior. When 
planning for a new HPC system the application 
behavior produced in this analysis must be 
combined with theoretical considerations for how 
the new system might behave differently. 
Nevertheless, the application characterizations 
and the underlying model that produced them are 
a valuable starting point to be used during the 
procurement of new systems. 

Once deployed, a new system needs data 
acquisition systems like IPM, Darchan [6], and 
LMT in order to evaluate the system balance 
actually achieved. 
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