
U.S. Department of Energy Best Practices Workshop on
File Systems & Archives

San Francisco, CA
September 26-27, 2011

Position Paper

First Author Name
Affiliation

e-mail address

Second Author Name
Affiliation

e-mail address
Philippe DENIEL

CEA/DAM
philippe.deniel@cea.fr

ABSTRACT / SUmmary

CEA/DAM manages two compute centers : TERA100 (first SC in Europe) which is dedicated to classified
applications and TGCC which is an open compute center for institutional collaboration (see http://www-
hpc.cea.fr/en/ for details). The management of produced data lead CEA's teams to deal with several specific
issues, making them develop their own solutions and tools. This paper is focusing on fFiles's Llifetime,
and metadata management.

INTRODUCTION

CEA/DAM has been involved in HPC for many years. Because the compute has widely increased, the
amount of produced data as drastically increased as well, making it necessary to have dedicated systems
and dedicated teams to handle the architecture in charge of storing the data. This situation leads to several
challenges : keeping data available to end users is of course one of them, but not the only one. With a huge
amount of data comes a huge amount of metadata records. Consideration haves to be taken to manage
them. Last, the data kept areis not all of same value. When some files are criticals, others are not, but
managing this aspect may be painful to the user who has thousands of files to delal with and sort. Tools
have then to be made available to users to help them deal with information life cycle.

Quotas and retentions
Ian Fleming said “diamonds are forever”, but for such files are not forever. The main issue there comes
from the users. They produce lots of data (a daily production of 30 to 100 TB a day is a very common
situation at CEA/DAM), but they often done't care about what the data become. This leads to a perpetually
growing storage system where less than 1% of the content is accessed. Finally a big amount of files will
never be read and are even totally useless once the run of the code is over (checkpoint/restart files for
example). But the truth is this : if not forced, a user will never delete his files. Two main reasons for this:

 Llack of time

 Afraid fear of accidentally deleteing useful data

http://www-hpc.cea.fr/en/
http://www-hpc.cea.fr/en/

I suggest two solutions to handle this. The first is an old-fashioned Unix paradigm : quotas. The second is
more sophisticated and is based on extended attributes to implement files's retentions.

Quotas usually works on a “space used” and a “used inodes” basis. File's size is not that critical (modern
FS and storage system are huge today), but consideration on inodes are more interesting because they
depict well the numbers of metadata records owned by a user. This is interesting in today's situation where
the meteadata footprint becomes the filesystem's limitation. Quotas are simple to set, manage and query
(quotactl function in the libC, RQUOTAv2 protocol to be used jointly with NFS), but is has its
inconvenientlimitations. One of them is the distributed nature of the filesystem used in the HPC world. In a
massively distributed product where data areis spread across multiple data servers with parallel pattern, it
becomes hard to efficiently keep a centralized place to keep user's information on quotas. Anyway, I
suggest that when available, quotas are to be used because they are a simple way of setting limits to the
users, making them aware of the amount of files and data that they own.

Files rRetentions is a an other promising another way. The idea is to associate a specific metadata record to
every file and directory. This is done by using extended attributes (aka xattr), which makes the assumption
that the underlying storage system's namespace handles such a feature. This xattr will contain an
information on the object's lifetime. This can be something like “this file will stop being of interest after a
given date” or “this file can be considered useless isf not read/written during a defined period”. The key
there is to have this metadata for every file (with users input). Specific tools will then audit the file system,
produce a list of files to be deleted based on “retention policies”. The user will be warned (mail...) when
some of theirhis files are candidates for deletion. Finally files are purged. This approach can lead to a
virtuous circle : when producing data, users will take the habit to set the parameters to tell how long they'll
requireneed the files, giving to the administrator input on their file's lifetime. This is good for the sysadm
that who will save space on his storage system, and this is good for the user can who can schedule the
deletion of his files, avoiding the painful task of cleaning his directories when quota limit is reached.

Metadata management
Past challenges tofor filesystems wasere size : would the available resources be large enough to store
everything I want to put in the system ? Then come performance consideration, and the idea that the users
hate to wait to access their data. Right now, these aspects are addressed by modern filesystems (for
example Lustre which is widely used at CEA) that are based on a distributed design relying on multiples
data servers.

But many files means many metadata records and this can quickly be problematic, especially in a HPC
environment. People who have once seen a single directory with hundreds of thousands of files in it know
what I am speaking about. Beyond the technical consideration (big directories are an “edge” situation), the
manageability of such exotic objects is a real problem : a single “ls -l” in it may last for hours.

Frequent filesystem audits (like those from CEA's RobinHood product (http://robinhood.sf.net)) helps in
this : it becomes easy to identify “nasty” patterns in users directories and takes corrective actions. For
example, the admin could decide to pack a big directory into a single tar file. Providing users with tools
withusing “best practices enforcement” is also a way we follow. Copying Data copydata to the storage
system goes is to delegated to a utilitytool that can decide to pack the data automatically.

Metadata volume is definitely an aspect to be seriously considered. Data volume issues have been solved

http://robinhood.sf.net/

by striping the data. It may not be so easy to stripe metadata because they carry internal dependencies (a
file belongs to a directory and can exist with several names if hard links are available) which may limit the
algorithms. I actually believe that the main challenge for the filesystems on exascale compute center will be
metadata management. Starting into considering this issue today, by setting limits to users to prevent them
for to creating “file systems's monsters” and by teaching them the good practices is definitely something to
be done today.

ConclusionS
The Exascale systems are coming tomorrow. Beyond the compute power's revolution, there is an
incredible technical gap for the storage system. Data management will not be the greatest challenge, but
metadata management will. The systems we will have at this time will store data that are produced today or
have been generated in the past years. If we are not careful today, we will come to an excruciating
situation in the future. And for sure, tomorrow's issues can be smoothed today by setting metadata's
useage limits (quotas, retentions) and by providing users with tools to reduce metadata production.

