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In operational air-quality forecasting, initial concentrations of chemical species
are often obtained using previous-day forecasts with limited or no account for
the observations. In this article we assess the role that assimilation of surface
measurements of ozone and fine aerosols can play in improving the skill of air-quality
forecasts. An assimilation experiment is performed using the Weather Research
and Forecasting – Chemistry model and Grid-point Statistical Interpolation, a
three-dimensional variational assimilation tool. The modelling domain covers the
northeastern region of North America. The measurements come from the United
States Environmental Protection Agency AIRNow network and are available hourly.
Background error covariance statistics are derived from forecasts in July 2004.
Comparison of forecasts issued in August and September 2006 and initialized with
and without the assimilation follows. Results show that forecasts of ozone and fine
aerosol concentrations benefit from the assimilation in terms of standard verification
scores for a period of at least 24 hours. However, significant reduction of errors as
a consequence of the assimilation is accompanied by fast model error growth in the
early forecast hours. Published in 2010 by John Wiley & Sons, Ltd.
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1. Introduction

Data assimilation is an essential part of weather forecasting
in all major meteorological centres. Until now, however,
operational air-quality forecasts have been often initialized
using concentrations of species obtained from the previous
day’s forecast with limited or no account for the
observations.

This lack of widespread application of data assimilation
in air-quality modelling, compared to weather forecasting,
is both a result of the complexity of the problem (the
number of chemical species varies in the model from tens to
hundreds and can be many times the number of atmospheric
state variables) and the scarcity of chemical observations
compared to meteorology (especially with respect to vertical
profiles). The increasing presence of satellites, unmanned
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aircraft systems, and chemical measurements by instruments
mounted on commercial aircraft will likely improve
availability of data for assimilation into chemical transport
models in the near future and potentially contribute to the
improvement of air-quality forecasts.

Inaccuracies in predicted winds, atmospheric stability
and insolation are recognized as prominent sources of
errors in air-quality forecasts. Chemical transport models
add new error sources to forecasts that arise from
uncertainties in parametrizations of chemical processes,
initial concentrations of species, emission sources, and,
for regional models, concentrations of species on the lateral
boundaries. The role of these factors features prominently in
the literature devoted to air-quality modelling (e.g. Guenther
et al., 1993; Jonson and Isaksen, 1993; Mathur et al., 1994;
Alapaty et al., 1995; Sillman and Samson, 1995; Zhang and
Rao, 1999; Biswas and Rao, 2001; Hanna et al., 2001; Barna
and Knipping, 2006; Lee et al., 2008).

In meteorology, data assimilation has been traditionally
applied to improve initial conditions. In air quality, data
assimilation can have a broader application that not only
improves initial conditions of species concentrations but
also provides tools for better estimation of emission
sources known to contain large errors. To account for
interactions between physical and chemical processes (e.g.
cloud processes and aerosol formation, effect of aerosols
on atmospheric radiation), an ideal data assimilation
system would allow a simultaneous assimilation of
meteorological data and concentration of species into a
meteorological–chemical model.

Applications of data assimilation to modelling atmos-
pheric chemistry include the work of Elbern and col-
laborators (Elbern et al., 1997, 2000, 2007; Elbern and
Schmidt, 1999, 2001) who developed a four-dimensional
variational (4D-Var) system that is being used with the MM5
meteorological model (www.mmm.ucar.edu/mm5) and the
European Air pollution Dispersion chemical transport
model (EURAD, www.eurad.uni-koeln.de/index e.html). In
a series of publications they demonstrated the feasibility and
usefulness of 4D-Var assimilation in idealized and real
data settings. Assimilated species included ozone, NOx,
SO2 and CO. Through an inversion procedure they also
adjusted emission rates of species and explicitly addressed
the relative role of initial conditions vs. emission source
estimates of ozone precursors, SO2 and SO4

−2. In conclu-
sion, the optimized emission factors markedly improved
SO2 forecasts and moderately improved ozone forecasts;
in the latter case, initial conditions were a major factor
in the improvement while emissions had a smaller effect,
possibly due to the inadequate model resolution, chem-
ical mechanism biases and the coarse NOx observation
network.

Daescu and Carmichael (2003), Carmichael et al. (2003),
Sandu et al. (2005), Chai et al. (2007) and Constantinescu
et al. (2007a, 2007b, 2007c, 2007d) describe an Ensemble
Kalman Filter (EnKF) and 4D-Var assimilation systems
that include the Sulphur Transport Eulerian Model (STEM:
Carmichael et al., 1991). Studies with different applications
of EnKF and with 4D-Var in idealized and real data settings
concentrated on ozone forecasting and showed that the
EnKF approach to chemical data assimilation is promising
but methods of covariance inflation and localisation, that
were essential for filter performance, required further
investigation. 4D-Var and EnKF were also used to reduce

uncertainties in emission source estimates and to adjust
boundary conditions. Even though improvement in the
forecasting skill was noted, no conclusion could be drawn
on the relative importance of initial conditions or emission
and lateral boundary condition adjustments.

Kahnert (2008) applied three-dimensional variational
(3D-Var) data assimilation to assimilate lidar observations
of an aerosol backscattering coefficient with the High
Resolution Limited-Area Model (HIRLAM: Gustafsson
et al., 2001). Currently, the European Centre for Medium-
range Weather Forecasts (ECMWF) pursues assimilation of
aerosol optical depths from Moderate-resolution Imaging
Spectroradiometer (MODIS) instruments to predict bulk
aerosol concentrations (Benedetti and Fisher, 2007;
Benedetti et al., 2009; Morcrette et al., 2009). Despite these
research achievements, use of chemical data assimilation in
real-time air-quality forecasting remains rare.

Below, we assess the role that assimilation of surface
measurements of ozone and fine aerosols can play in
improving the skill of air-quality forecasts. We present
results that were obtained with a 3D-Var system that includes
the Weather Research and Forecasting – Chemistry model
(WRF-Chem: Grell et al., 2005) and Grid-point Statistical
Interpolation (GSI: Wu et al., 2002; Purser et al., 2003a,
2003b). We show that even a simple approach in chemical
data assimilation of ozone and fine particulate matter leads
to gains in the skill of chemical model forecasts. This can
be accredited to the improvement in initial conditions with
only a slight increase of computational time.

We describe observations, our modelling system,
experiment design and results that we obtained from the
assimilation. Discussion and recommendations for future
endeavours are presented in the conclusion.

2. Observations

Ozone and fine particulate matter are the main components
of smog, and their presence in the atmosphere poses a serious
health hazard for people. Thus, the accurate prediction of
these species’ concentration levels has significant human
and economic cost implications.

We define fine particulate matter as aerosols with a
diameter smaller than 2.5 µm, hereafter referred to as PM2.5.

Surface ozone and PM2.5 concentrations are obtained
through the US Environmental Protection Agency (EPA)
AIRNow network. Ozone from the AIRNow network is
measured by ultraviolet (UV) absorption with instrument
requirements specified under the US National Ambient
Air Quality Standards (NAAQS) (see Federal Register,
Vol. 73, No. 60, 40 CFR Parts 50 and 58, available
at www.epa.gov/air/ozonepollution/actions.html). Uncer-
tainty of the ozone measurements, which is a necessary par-
ameter within the assimilation procedure, is taken as 1 ppbv.
PM2.5 from the AIRNow network is measured by Tapered
Element Oscillating Microbalance (TEOM), which has been
certified since 1990 for PM2.5 measurements under the
NAAQS (see Federal Register, Vol. 71, No. 200, 40 CFR Parts
50, available at www.epa.gov/air/particles/actions.html).
Uncertainty of PM2.5 measurements is taken to be 2 µg m−3.
Large measurement errors of PM2.5 mass that are due to
species volatility and depend on atmospheric conditions
are possible (e.g. Hitzenberger et al., 2004). However,
formulations to estimate such errors for general applications
are not available.
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Figure 1. Maps of measurement sites in AIRNow network for real-time ozone (left) and PM2.5 (right).

The AIRNow network provides hourly-averaged ozone
and PM2.5 concentrations over the USA and Canada. These
measurements are readily available around the clock with
minimal delay and can be used in real time for data
assimilation or model evaluation. About 1300 stations
measure ozone, with roughly half that number measuring
PM2.5. Maps of the stations measuring both constituents are
shown in Figure 1. The density of stations is highest in the
eastern part of the USA, followed by California and eastern
Texas, while observations are relatively sparse in the middle
of the continent. Monitors for both species are located
mostly in urban and suburban settings. In this presentation,
only results from the assimilation of surface monitors shown
in Figure 1 are presented. Work on assimilation of upper-air
ozone and PM2.5 measurements within the GSI framework
is currently underway.

3. Modelling system

WRF-Chem is an atmospheric model with online chemistry
that simultaneously predicts weather and atmospheric
composition and, consequently, allows interactions between
meteorology and chemistry such as aerosol–radiation or
aerosol–microphysics feedbacks. The model includes two
dynamical cores and a wide range of parametrizations
of boundary layer, radiation, microphysics, convection,
ocean and soil as well as multiple choices of formulations
for gaseous and aerosol reactions. Specific choices of
parametrizations in this study are given in section 4.

GSI is a 3D-Var assimilation tool in which analysis is
obtained by minimization of a cost function given by

J (x) ≡ (x − xb)
T B−1 (x − xb)

+ (
y − H(x)

)T
R−1

(
y − H(x)

)
. (1)

In this equation, x is a vector of analysis, xb is the forecast
or background vector, y is an observation vector, H is
an observation operator and B is the background error
covariance matrix. R is the observation error covariance
matrix; each element of the matrix combines measurement
and representativeness errors. In the GSI, the matrix B is
separated into vertical and horizontal components (the latter

can be anisotropic); it is represented as a product of error
variances and correlation matrices which are modelled with
recursive filters (Purser et al., 2003a, 2003b). Application
of the latter requires specification of background error
correlation length scales.

It is noteworthy that the analysis variables that the
GSI uses are: stream function, unbalanced part of velocity
potential, unbalanced part of temperature, unbalanced part
of surface pressure and pseudo-relative humidity. In our
case, analysis variables also include ozone and PM2.5. The
analysis is univariate in ozone and PM2.5. Even though
one aspect of the GSI is that unbalanced variables are
used in the minimization, and this currently has no
implication for chemical applications, it is possible that
in the future, regression might be employed to establish
relationships between the balanced part of state variables
and concentration of species. If employed, this might also
minimize the adjustment of concentrations of species due
to imbalances introduced by the assimilation.

4. Experimental design

In the data assimilation experiments we use an Advanced
Research WRF dynamical core (ARW: Skamrock et al.,
2005) and the following parametrizations of physical
and chemical processes: Yonsei University boundary-layer
parametrization (YSU: Hong and Pan, 1996); Noah land-
surface model (Chen and Dudhia, 2001); Grell–Dévényi
convective parametrization (Grell and Dévényi, 2002);
WSM-5 microphysics (Hong et al., 2004); Dudhia short-
wave (Dudhia, 1989); Rapid Radiative Transfer Model
long-wave radiation (RRTM: Mlawer et al., 1997); Regional
Acid Deposition Model gaseous chemistry (RADM-2:
Stockwell et al., 1990, 1997); Modal Aerosol Dynamics
for Europe/Secondary Organic Aerosol Model mechanism
(MADE/SORGAM: Ackermann et al., 1998; Schell et al.,
2001).

Lateral boundary conditions for meteorological state
variables in the WRF-Chem come from the opera-
tional Weather Research and Forecasting – Nonhydrostatic
Mesoscale Model (WRF-NMM, www.dtcenter.org/wrf-
nmm/users/docs/user guide/V3/index.pdf) forecasts at
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Figure 2. Modelling domain and topography.

12 km grid resolution available from the Environmen-
tal Modeling Center (EMC) of the National Oceanic and
Atmospheric Administration (NOAA). Data assimilation
was not attempted for meteorological state variables in this
work; instead, meteorological state variables in WRF-Chem
are initialized daily with the operational analyses obtained
at EMC using WRF-NMM forecasts and the GSI.

Boundary conditions for chemical species in the simula-
tions are laterally and temporally invariant. They are speci-
fied based on measurements onboard National Aeronautics
and Space Administration (NASA)-sponsored aircraft mis-
sions as derived by McKeen et al. (2002). We believe that
application of such lateral boundary conditions in the model
is defensible given difficulties in matching grid resolutions,
emission inventories and chemical speciation of regional
and global models. For example, Tang et al. (2007) showed
that predictions of ozone by global models differed sub-
stantially and thus were a major source of uncertainty for
lateral boundary conditions in a regional model. They also
found by comparing regional model simulations with air-
craft observations that mean ozone distributions below 3 km
were insensitive to global boundary conditions. We are not
aware of an analogue study for PM2.5 but expect that similar
conclusions would hold, since concentrations of both species
in the lower troposphere are dominated by local processes.

Initial conditions for chemical species at the very
beginning of simulation periods are also specified based on
the measurements derived by McKeen et al. (2002). Similar
to model evaluation studies by McKeen et al. (2007, 2009),
a five-day model spin-up period was employed to allow for
the adjustment of concentrations of chemical species.

Emissions of ozone and PM2.5 precursors are those refer-
enced in Kim et al. (2006). These are based on the US EPA
1999 National Emissions Inventory (version 3) with updates
of major electrical generating facilities to the observed July
2004 emissions from the Continuous Emissions Monitoring
Network. The modelling domain covers the eastern part
of North America with a horizontal grid spacing equal to
27 km and 34 vertically stretched levels up to the model top
at 50 hPa. The domain is shown in Figure 2.

The observation operator represents linear horizontal
interpolation. No extrapolations are performed in the ver-
tical, and surface observations are assumed to coincide with

the first model level. Assumptions on fluxes for extrapola-
tions to the first model level would be quite uncertain when
using similarity theory and not likely to improve reliability
of the assimilation. Since observations are largely confined
to flat terrain and altitudes of some measurement sites
are not available, differences between model topography
and reality were neglected. Unlike in observations, the
observation operator does not include temporal averaging.
For consistency, the same simplifications (with respect to
vertical location and temporal averaging) were applied in
the model evaluation. A one-hour assimilation window
matches the averaging time of observations.

Observations that exceeded unrealistic values (200 ppbv
for ozone and 150 µg m−3 for PM2.5) and those for which
the difference between the measurements and interpolated
model concentrations exceeded threshold values were
eliminated from the assimilation. Otherwise, no quality
control was performed on observations.

Our observation covariance estimate error, represented by
diagonal matrix R in the expression for the cost function in
section 3, is a sum of measurement and representativeness
errors. Measurement errors were described in section 2.
Representativeness error is parametrized with Elbern et al..’s
(2007) formula given by εrepr = εabs × (�x/Lrepr)1/2, where
εabs is ‘characteristic absolute error’, a tunable parameter, �x
is model grid size and Lrepr represents the radius of influence
of an observation. Experimentally, we found εabs = 1/2 εobs

to be adequate and prescribed Lrepr equal to 10 km, 4 km
and 2 km for rural, suburban and urban sites, respectively.
We prefer this approach to thinning of observations since
we aim to obtain grid concentration in the analyses that
remains in relation to all measurements within the model
grid. Given the observation operator’s simplicity and the
relatively small number of observations, the computational
time of the assimilation procedure is minimal.

To determine horizontal and vertical length-scales of
error correlations and variances for ozone and PM2.5,
the US National Meteorological Centre (NMC) method
(Parrish and Derber, 1992) was used. In the NMC method,
background-forecast errors are approximated by differences
between forecasts valid at the same time but issued at
different times. To eliminate effects of model biases due
to the diurnal cycle, 48-hour forecasts were issued at 0000
UTC and 1200 UTC in July and August 2004 and differences
were calculated for forecasts at 24 and 48 hours verified at
0000 UTC and 1200 UTC. Error variances were averaged
horizontally for each model level. Horizontal and vertical
error correlation length-scales were obtained at all model
levels by a least-square fitting of Gaussian functions to
correlation-distance relations (in the vertical the distance
was measured in model levels rather than physical distance).

Vertical variability of horizontal length-scales of error
correlation and background error standard variation for
ozone and PM2.5 at 0000 UTC and 1200 UTC are shown
in Figure 3. The increase of horizontal correlation scales in
the upper troposphere is comparable to meteorology, where
a similar trend is observed (e.g. Daley, 1991), except for
somewhat erratic model behaviour at the tropopause where
the length-scales decrease; this being a consequence of the
prescribed climatological boundary conditions. Horizontal
length-scales for ozone are generally shorter than length-
scales for PM2.5. Diurnal variation of the vertical length-
scales is primarily associated with the evolution of the
boundary layer and is small in the upper troposphere.
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(a) (b)

(c)

Figure 3. Background error correlation metrics at 0000 UTC and 1200 UTC for ozone and PM2.5: top – horizontal length-scales, middle – vertical length
scales, bottom – standard deviations. Note that the vertical length-scales are plotted in units of the vertical grid. In this figure values of sigma (1.0, 0.8,
0.6, 0.4, 0.2, 0.0) on the ordinate correspond approximately to values of atmospheric pressure (965, 780, 600, 415, 230, 50) hPa.

Standard deviation of the background error is directly
related to the species concentrations. For ozone, the largest
values are in the upper troposphere, followed by a high
concentration in the lower troposphere, and minimum
concentration in the middle troposphere. For PM2.5, the
largest values are observed at the surface and at the top of
the boundary layer in the late afternoon (0000 UTC) and
at the surface in the early morning (1200 UTC). Above the
boundary layer, the standard deviation of the background
error of PM2.5 decreases rapidly.

It is important to note that the aerosol parametrizations
employed in the model carry multiple species and
sizes of aerosol particles. For consistency with PM2.5

measurements, the total model concentration of aerosol
species with diameters below 2.5 µm is used. An ad
hoc approach was employed in which total PM2.5 mass
following the assimilation was distributed to different
species and sizes based on their a priori contributions

to the total PM2.5 mass. Alternatively, the distribution
could have been achieved through the background-forecast-
derived covariances between aerosol constituents and
total PM2.5. However, given the lack of concentration
measurements of aerosol species and sizes, and uncertain
reliability of background error covariances, this approach,
which also requires considerably larger effort, was not
pursued.

In the experiment, a 12-hour assimilation cycle was
employed to issue 24-hour forecasts at 0000 UTC and
1200 UTC in August and September 2006 to be compared
with forecasts without data assimilation (control).

5. Results and evaluation

The evaluation of the control and forecasts with the
assimilation is valid for 10 August to 30 September
2006. To prevent ‘overfitting’, experiments were performed
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Figure 4. Time series of evaluation statistics for control forecasts (thick
dashed line) and forecasts with assimilation (solid line) for ozone: top – bias,
middle – pattern RMSE, bottom – correlation coefficient. Previous-day
persistence plotted with thin dashed line.

with assimilation of 50% and 75% of randomly chosen
observations for both ozone and PM2.5. Only minimal
deterioration of bias (less than 1 ppbv for ozone and
0.1 µg m−3 for PM2.5), pattern root-mean-square error
(pattern RMSE, Taylor (2001), about 1 ppbv for ozone and
less than 0.1 µg m−3 for PM2.5), and spatial correlation
(about 0.02 for ozone and less than 0.01 for PM2.5) between
the analyses and the independent set of observations was
noted. Description of evaluation statistics is given in the
appendix.

The assumption on the Gaussian distribution of model
and observation errors is implicit in deriving the cost
function. Examination of distributions of background-
forecast and observation errors with respect to the analyses

Figure 5. Time series of evaluation statistics for control forecasts (thick
dashed line) and forecasts with assimilation (solid line) for PM2.5 : top – bias,
middle – pattern RMSE, bottom – correlation coefficient. Previous-day
persistence plotted with thin dashed line.

in our simulations showed that a first-order autoregressive
model would be a more suitable alternative.

Bias correction of forecasts was not applied even though
presence of bias violates theoretical assumptions of the data
assimilation methodology. However, evaluation showed that
statistical verification scores of the analyses obtained from
surface ‘biased’ and ‘debiased’ forecasts are nearly identical.

In Figures 4 and 5, time series of bias, pattern RMSE,
and correlation for 24-hour forecasts of both species with
and without data assimilation are shown in comparison to
the persistence. (The bias of a domain-averaged persistence
remains close to zero and was, therefore, not plotted.) To
better match observation times and continuous character of
the measurements, the statistics were calculated for forecasts
averaged at two consecutive full hours.
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Figure 6. Evaluation statistics for forecasts of the next-day 8-hour average maximum ozone concentration in the control (left) and forecasts with
assimilation (right): top – mean bias, middle – pattern RMSE, bottom – correlation coefficient.

For ozone forecasts with assimilation, the improvement
in all metrics was significant but large increases in bias,
pattern RMSE and a decrease in correlation are seen in the
early hours of the forecasts. Generally, poor skill of models
in predicting night-time and early morning boundary-layer
meteorology and ozone is likely a main reason for this
quick deterioration of the forecasts. Another factor for the
deterioration might be lack of accounting for the effect that

the assimilation should have on the concentration of ozone
precursors. In terms of bias and pattern RMSE reduction,
assimilations at 0000 UTC and 1200 UTC have a similar
effect but the drop in correlation for the early morning
assimilation is more pronounced. Assimilation in the early
morning provides very modest improvement in forecast
skill for the following night. Yet, despite the simplicity
of the current assimilation approach, a positive effect of
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Figure 7. Equitable threat score and bias ratio for different thresholds of
the maximum 8-hour average ozone concentration for control forecasts
(thick dashed line) and forecasts with assimilation (solid line). Score for
persistence plotted with thin dashed line. Number of observations of the
maximum 8-hour average ozone concentration given on the upper axis.

assimilations on forecasts in all cases is quite apparent
during the whole 24-hour evaluation period.

For PM2.5 forecasts, the positive impact of the assimilation
is also evident in the evaluation metrics presented in
Figure 5. Unlike for ozone, the quality of forecasts does
not deteriorate rapidly after the assimilation. Similar to
ozone, the assimilation in the early morning only slightly
improves forecast skill on the following night.

Similar to previous air-quality forecast evaluations with
AIRNow data (Eder et al., 2006; McKeen et al., 2007), below
we present statistics for the quantities used in regulatory
applications. In May 2008 the regulatory limit for ozone
compliance within the USA was changed from 85 ppbv to
75 ppbv for a maximum 8-hour average. Since December
2006 the regulatory limit for PM2.5 compliance within the
USA has been set at 35 µg/m3 for a 24-hour average. To
allow for sufficient forecast lead time, only forecasts issued
at 0000 UTC are considered below.

Bias, pattern RMSE and the correlation coefficient
(calculated as for the previous evaluations) for the next-
day 8-hour average maximum ozone concentration in the
control and forecasts with assimilation are compared in
Figure 6. An increase in the number of yellow dots (small
bias and pattern RMSE) and a decrease in the number of red
points (large bias and pattern RMSE) from left to right in
the two upper rows of the figure are apparent. In the third
row of this figure, an increase in the number of red dots that
corresponds to better correlation in the right-hand plot is
also visible. In summary, out of 954 points in Figure 6, mean

bias and pattern RMSE improved for over 80% of points,
and correlation improved for over 75% of points.

The equitable threat score (ETS, a measure of forecast
skill: Schaefer, 1990) and bias ratio (BR, a ratio of the
predicted to the observed area) for different thresholds of
the maximum 8-hour ozone concentration are plotted in
Figure 7. The improvement in quality of forecasts due to
assimilation is obvious given a known deficiency of ETS
which favours forecasts with larger BR. We note that the
maximum 8-hour average ozone concentration is usually
centred at about 1500 LDT (1900 UTC on the east coast
of the USA and 2000 UTC in the central region of the
USA). Despite the fact that data assimilation was performed
20–21 hours earlier, the improvement for thresholds less
than 80 ppbv is apparent.

In Figure 8, bias, pattern RMSE and the correlation
coefficient for the 24-hour average PM2.5 concentration
are shown. As for ozone, there is a visible decrease of
bias and pattern RMSE, which are reflected in the yellow
and blue shifts from left to right in the two upper rows.
Also, an increase in the number of red dots from the
left to the right column in the third row points to a higher
correlation in forecasts with assimilation. In summary, mean
bias improved for over 60% of 355 points in Figure 8, pattern
RMSE improved for over 80% of the points and correlation
improved for over 90% of the points.

As for ozone, ETS and BR for different thresholds
of the 24-hour average PM2.5 concentration are shown
in Figure 9. Here, very significant improvement of both
verification scores is achieved when assimilation is applied.
Poor performance of the chemical transport model with
respect to persistence in predicting PM2.5 concentrations
can be noted. However, in this respect WRF-Chem is by
no means inferior to other models as noted in model
comparison studies by McKeen et al. (2009) and Djalalova
et al. (2010).

We separately compared forecasts with and without the
assimilation during two stagnation episodes in August
2006 when measurements at numerous sites exceeded
mandated regulatory limits for ozone and PM2.5 compliance.
Qualitatively, ETS and BR for both types of forecasts during
the episodes displayed features similar to those shown in
Figures 7 and 9.

6. Discussion and conclusions

This experiment demonstrated that improvement of
initial conditions of ozone and PM2.5 concentrations via
assimilation can lead to much improved forecasts of
concentrations of these species in terms of standard statistical
measures. Despite a quick drop of forecast skill in the
early hours following assimilation (particularly for ozone)
a positive impact of assimilation was observed in forecasts
out to at least 24 hours.

That result for ozone was encouraging, especially con-
sidering that it is a very reactive species, dependent on
the presence of precursors and sunlight. Measurements of
concentrations of precursors were not available for this
evaluation period so we could not determine if the assimi-
lation of ozone had any positive impact on their predicted
concentrations. Currently, modelled concentrations of the
precursors are only affected implicitly by assimilation of
ozone. In future we plan to influence concentrations of

Published in 2010 by John Wiley & Sons, Ltd. Q. J. R. Meteorol. Soc. 136: 2013–2024 (2010)



3D-Var Data Assimilation of Ozone and Fine Particulates 2021

Figure 8. Evaluation statistics for forecasts of the 24-hour average PM2.5 concentration in the control (left) and forecasts with assimilation (right):
top – mean bias, middle – pattern RMSE, bottom – correlation coefficient.

the precursors and to minimize adjustment of their con-
centrations due to chemical imbalances introduced by the
assimilation.

Improvement in the forecasting skill of PM2.5 concen-
trations with assimilation was expected. First, PM2.5 is
generally less volatile than ozone (with the possible excep-
tion of decrease in concentration of hydrophilic aerosols due
to wet scavenging) and the impact of assimilation should

have longer-term effects. Second, PM2.5 forecasts generally
showed large errors in terms of basic statistics, and their cor-
rection via assimilation should be substantial. Experiments
with a much simpler aerosol parametrization had sim-
ilar improvements, and forecasts with assimilation were
comparable in skill to those using the MADE/SORGAM
module. Given generally poor performance of models in
predicting aerosol concentrations, it can be expected that
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Figure 9. Equitable threat score and bias ratio for different thresholds of the
24-hour average PM2.5 concentration for control forecasts (thick dashed
line) and forecasts with assimilation (solid line). Score for persistence
plotted with thin dashed line. Number of observations of the maximum
8-hour average ozone concentration given on the upper axis.

forecasting with simple aerosol parametrizations and data
assimilation will have advantages over the more complex
parametrizations not using assimilation.

High-ozone episodes commonly occur in atmospheric
conditions that limit horizontal and vertical transport of
species, leading to the accumulation of pollutants at the
surface (Vukovich et al., 1977). Such conditions often occur
in the summer within stationary high-pressure systems
characterized by subsidence, weak winds, few clouds and
high insolation. Further investigation will determine if
correlations between stream function and ozone, and
temperature and ozone justify regression dependence that
could be used in data assimilation. If sufficient dependence
exists, further improvements in ozone predictions would
be expected for regions where observations are sparse but
where meteorological observations exist.

Extensions to the work presented here will include
an investigation of forecast performance at different
assimilation times with higher frequency of the assimilation
cycle, and the use of GSI to assimilate measurements from
aircraft, ozonesondes and satellites.

Horizontal and vertical length-scales and background
error variances will receive further tuning since the current
data are derived from a monthly series of 48-hour forecasts
that are issued continuously without data assimilation. The
tuning will be accomplished on a seasonal basis when the
assimilation cycle is implemented in real time. With an
increased sample size and greater statistical confidence,

zonal dependence of background error scales will be
introduced.

Our near-term goals also include simultaneous assimila-
tion of meteorological and chemical data.

This study focussed on the importance of initial
conditions in air-quality prediction. The assimilation in
our experiments had a positive effect on the skill of
short-range forecasts of ozone and PM2.5 concentrations
but errors that develop during the simulations have
origins that cannot be ameliorated with 3D-Var. Major
sources of forecast errors can be attributed to deficiencies
in parametrizations of chemical processes at night and,
likely, poor representation of the nocturnal boundary layer
and mixing of species. As noted by others, applications
of inverse methods with adjoints or ensemble filters
to address uncertainties in emission source estimates
should have a more long-lasting effect on the skill
of forecasts. Finally, but maybe most importantly,
significant improvement in air-quality forecasts will
not occur until more comprehensive observations of
atmospheric composition become available; particularly for
smog prediction, concentration measurements of ozone
precursors and aerosol constituents are critical.

Appendix

Verification statistics employed in the manuscript are
described below.

Taylor (2001) defined pattern RMSE as

E′ ≡
[

1

N

N∑
n=1

{(
fn − f

)
− (rn − r)

}2
] 1

2

, (2)

where f , r and overbar denote a test field, a reference field
and averaging, respectively. In our case, f represents model
concentrations interpolated temporally (model output
available at the (exact) beginning of an hour) and spatially
to observation locations, and r represents observations
(available 30 minutes after the hour).

Equitable threat score (ETS: Schaefer, 1990) is defined as

ETS ≡ a − ch

a + b + c − ch
, (3)

ch = (a + b)(a + c)

a + b + c + d
. (4)

In the above formulae, a (hits), b (false alarms), c (misses),
and d (correct rejections) stand for probabilities of an event
exceeding a certain threshold.

Bias ratio (BR) is defined as

BR ≡ a + b

a + c
. (5)

To calculate correlation between model and observations,
a series of observations valid at a given forecast time
is matched with a series of interpolated model values.
Therefore, this statistic represents spatial rather than
temporal correlation between model and observations. Also,
for these matching series model biases and RMSEs were
calculated.
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