
 1

U.S. Department of Energy Best Practices Workshop on
File Systems & Archives

San Francisco, CA
September 26-27, 2011

Position Paper

Kevin Harms
LCF/ANL

harms@alcf.anl.gov

ABSTRACT / SUMMARY
This paper addresses the “Usability of
Storage Systems” and the
“Administration of Storage Systems”
topics. Given the small staff assigned to
the LCF Intrepid storage resources we
have searched for methods to optimize
the use of our storage resources. We
present these methods for proactively
finding opportunities to tune application
I/O and finding degraded hardware that is
reducing overall I/O throughput.
INTRODUCTION
The LCF is a relatively new facility and is in the
process of developing its storage practices and
procedures. One item that has become clear is the
need to be proactive about storage usage and
administration. We have a limited staff dedicated
to the storage system and waiting until an issue
turns into a real problem leaves us in an awkward
position. In order to address this, we are working
on some methods to proactively find issues and
start working to solve them before they become
worse.

The first method was to install a tool, Darshan, to
profile user I/O so that users and staff could have
a basic tool to help tune I/O for Intrepid and best
utilize the storage resources LCF provides.

The second method is to begin looking at the
overall performance of the storage hardware to
find and fix marginal hardware without the need
to wait for it to degrade to the point of outright
failure.

System Description
Here is an overview of the core Intrepid storage
system. Intrepid has two main storage systems.
The home file system is GPFS based and uses 4
DDN9550 SANs that are directly attached via
DDR IB to 8 xSeries file servers. The scratch
storage has two different file systems running on
it, GPFS (intrepid-fs0) and PVFS, (intrepid-fs1)
which utilize the same hardware. The scratch area
uses 16 DDN9900 SANs, which are directly
attached via DDR IB to 128 xSeries file servers.
(8 servers per DDN) File system clients are
connected over a 10 GB Myrinet fabric.

THE USABILITY OF STORAGE SYSTEMS
Darshan
Darshan [1] was a tool developed by the MCS
department in ANL and deployed on the LCF
Intrepid Blue Gene machine. Darshan captures
information about each file opened by an
application. Rather than trace all operational
parameters, however, Darshan captures key
characteristics that can be processed and stored in
a compact format. Darshan instruments POSIX,
MPI-IO, Parallel netCDF, and HDF5 functions in
order to collect a variety of information.
Examples include access patterns, access sizes,
time spent performing I/O operations, operation
counters, alignment, and datatype usage. Note
that Darshan performs explicit capture of all I/O
functions rather than periodic sampling in order
to ensure that all data is accounted for.

The data that Darshan collects is recorded in a
bounded (approximately 2 MiB maximum)
amount of memory on each MPI process. If this
memory is exhausted, then Darshan falls back to
recording coarser-grained information, but we
have yet to observe this corner case in practice.
Darshan performs no communication or I/O while
the job is executing. This is an important design
decision because it ensures that Darshan
introduces no additional communication
synchronization or I/O delays that would perturb
application performance or limit scalability.
Darshan delays all communication and I/O
activity until the job is shutting down. At that
time Darshan performs three steps. First it
identifies files that were shared across processes
and reduces the data for those files into an
aggregate record using scalable MPI collective
operations. Each process then compresses the
remaining data in parallel using Zlib. The
compressed data is written in parallel to a single
binary data file.

Darshan was deployed on Intrepid by creating a
modified set of mpiXXX compiler wrappers
which link in the darshan library code. These
modified compiler wrappers are part of the users
default path which means many applications link
in Darshan with no extra work by the user. These
applications put logfiles into a common area and
are setup so only the user who produced the logs
can read them. Later we change the group
permission to a special ‘darshan’ group and then
add group read permission. These logs then
become accessible by the LCF staff and a few
selected MCS research staff.

User Analysis
The first capability this provides is for users to
look at some information about their jobs I/O
profile and compare it to common suggestions
available via our wiki documentation. If the user
feels their I/O performance is not as good as it
should be, when contacting the LCF staff, we
already have some basic information about the
I/O patterns they are using which might give
some initial starting suggestions for the user to try
for improving I/O performance on Intrepid. This

also addresses a common issue where users are
not familiar with how their application does I/O,
perhaps because they are using some large
application where someone other person or group
implemented the IO code. Figure 1 shows an
example from the darshan-job-summary.pl
output.

Figure 1 – Darshan Job Summary Example

This summary information can provide a useful
starting point for I/O analysis. We are aware of a
few applications that have used this output to
successfully improve their application I/O for
Intrepid.

Project Analysis
The second capability is to proactively analyze
darshan logs to see how users are utilizing the
storage system and if they are being effective. We
are developing a basic web interface around
aggregated log files that can be examined on a
per-project basis to find who the major users of
the storage system are and how are they using the
system. We explored this idea in reference [2].
Figure 2 shows the top 10 projects from 1/1/2011
to 6/30/2011. We can look at these projects
individually to see how they are using the I/O
system.

 3

Figure 2 – Top 10 Projects by bytes moved

Once we identify the top I/O users we can
examine their I/O usage in more detail. Figure 3
shows an example of aggregate information about
a single project. We can look at the percent time
spent in I/O and see if we should consider talking
with a project about their I/O usage if it looks
subpar and thereby improve their utilization of
the core-hours they have been granted.

Figure 3 – Darshan Project Information

We had identified a project in 2010 that was a top
I/O consumer but had a high percentage of time
spent in I/O. We were successful in working with
this project to change the method for writing of
files, which gave them a 30% improvement in
write throughput.

System Planning
The third capability we get is the ability to look at
what I/O patterns users want to use and what they
want to do. This information can be used to target
how we allocate our resources for next generation
systems. Examples from above show users are
still obsessed with generating O(1000),
O(100000), O(1000000) files. The file per
process model tends to break down at the 8192
node level (or 32768 processes) on Intrepid. For
our next generation system, we have planned to
split data and metadata and use separate SSD
based storage for the metadata in hopes of
boosting metadata performance, which would
serve as a band-aid for the file-per-process users.
Another point is that we see about 60% of the
jobs at large scale go to either shared or partially
shared files and fewer use the file-per-process
model. Figure 4 shows this distribution. However,
in this same time period we saw remarkably few
people using high-level libraries such as HDF5 or
PnetCDF. This might indicate we need to spend
time educating the userbase about these libraries
or find out why our users would rather create
their own shared file format rather than leverage
existing ones.

Figure 4 – File usage (1/2010 – 3/2010)

THE ADMINISTRATION OF STORAGE
SYSTEMS
Another aspect of storage system efficiency is
ensuring the current hardware is delivering
performance up to its useable peak. Anecdotally
we have observed a single failing SATA disk can
produce a global slowdown of the scratch file

system. During our early test stages when we
were tuning the /intrepid-fs1 file system, we
would often find a marginal drive would cause a
significant slow down in an IOR test case. As an
example, we would see something on the order of
losing 50% of total throughput. After failing 1 (or
more) drives, the system would return to its
optimal performance level.

The work we have done in this area is still very
preliminary and we have not validated any of our
suppositions.

Log Analysis
The DDN9900 will report many errors and
statistics but it also logs informational events in
the system log. These are generally not reflected
directly in any of the system statistics. We
developed a trivial monitoring tool to check the
event logs of each DDN approximately once per
day and send and alert if there were a large
number of new messages in the log. Here is a
short snippet from the monitoring tool, which
emails its results.

 INFO INT_GH 8-29 12:50:31 Recovered:
Unit Attention Disk 9G GTF000PAH51JNF

 INFO INT_GH 8-29 12:59:29 Recovered:
Unit Attention Disk 22G GTF002PAHHKXRF

 INFO INT_GH 8-29 13:02:43 Recovered:
Subordinate errors detected.

 INFO INT_GH 8-29 13:05:18 Recovered:
Unit Attention Disk 2G GTF100PAHW59BF

 INFO INT_GH 8-29 12:49:44 Recovered:
Unit Attention Disk 13G GTF002PAHWD21F

 INFO INT_GH 8-29 13:00:31 Recovered:
Subordinate errors detected.

 New Log Messages: 2650

Example 1 – DDN Log monitoring output

In Example 1, we see that this DDN had 2600
new log messages and many of those messages
are related to problems with disk access on
channel ‘G’. In this case, we could have opened a
support request with DDN to determine which
component was really at fault. In this particular
case, disk 7G failed 5 days later. We could have
failed disk 7G earlier and presumably not lost any
performance during that time period.

Visualization
Another method to monitor the storage
infrastructure for marginal components is via
visualization of I/O metrics. We setup a utility to
pull the ‘tierdelay’ metric from all tiers of each of
the 32 DDN controllers associated with the
scratch file system. We then ran the IOR
benchmark with a write workload while we
collected samples every 10 seconds. The data was
loaded into ParaView and we began looking for
patterns.
Figure 5 shows a combined visualization of total
operation count for each channel/tier combination
for all DDNs at the last timestep.

Figure 5 – Cumulative Operations

Since the IOR workload was evenly distributing
data over all LUNs we should see similar
operation counts, but instead we see one tier (dark
red) that has significantly more operations than
the rest of the tiers. In talking with DDN, the
‘tierdelay’ counter records all operations
including internal retries. It would appear that
there is some issue on this particular tier resulting
in retries being generated.
Figure 6 shows the same metric again but now as a
3D volume.

 5

Figure 6 – Tier Delay as Volume

The volume shows a count for the number of
operations, which occurred within a defined
bucket. For example, 100 operations at 0.2
second delay. The bottom of the volume is the
shortest delay and top of the volume is the highest
delay. The dark red coloring are higher counts
going to blue at the lowest counts. In general the
image shows the lowest latency buckets have the
highest counts, which is good and the highest
latency buckets have the lowest counts, also
good. However, you can see a spike on a couple
of disks where the higher latency buckets have a
much higher total count than most other disks.
We don’t have conclusive findings that those disk
are causing system wide problems, but that is an
example of what we hope to find.

CONCLUSIONS
The Darshan deployment has been successful on
the LCF Intrepid system. A few projects have
used it to tune I/O characteristics to optimize for
Intrepid and seen improvements in throughput.
We also identified a project that was significant
storage user but also suffered from slow I/O
performance. We worked with the members of

this project to update their code with a slightly
modified I/O model that used fewer files which
resulted in a 30% improvement of their I/O write
speed. We plan to continue to enhance our
summarization web tools to provide easier access
to the darshan data for the LCF staff.

Our progress on identifying faulty hardware prior
to failure on the DDN SANs is still very
preliminary and we have not validated any of the
results. We hope to progress this further by being
able to validate performance improvement after a
hardware replacement. We would also hope to
identify these patterns so that we could create
statistical models that would work on the normal
I/O load of Intrepid without the need for an
invasive diagnostic run.

ACKNOWLEDGEMENTS
Phil Carns – for all that is Darshan

Neal Conrad – for Darshan web development
Justin Binns – for IO visualizations

REFERENCES
1. Philip Carns, Robert Latham, Robert Ross,

Kamil Iskra, Samuel Lang, and Katherine
Riley. 24/7 characterization of petascale I/O
workloads. In Proceedings of 2009 Workshop
on Interfaces and Architectures for Scientific
Data Storage, September 2009.

2. Philip Carns, Kevin Harms, William Allcock,
Charles Bacon, Samuel Lang, Robert Latham,
and Robert Ross. Understanding and
improving computational science storage
access through continuous characterization.
 In Proceedings of 27th IEEE Conference on
Mass Storage Systems and Technologies
(MSST 2011), 2011.

