
 1

U.S. Department of Energy Best Practices Workshop on

File Systems & Archives

San Francisco, CA

September 26-27, 2011

Position Paper

Nicholas P. Cardo

National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

cardo@nersc.gov

ABSTRACT
Disk quotas are a useful tool for controlling file system space
consumption. However, each file system type provides it’s own
mechanism for displaying quota usage. Furthermore, each file
system could display the information differently. Unifying how
quota information is reported would simplify the user’s
experience.

Also having quotas span multiple file systems would provide users
some flexibility in storage usage.

INTRODUCTION
The use, management, and enforcement of disk quotas is often
difficult to interpret at the user’s level as well as being too rigid of
an enforcement mechanism.

Identification of the issues
While disk quotas are extremely useful in managing disk space,
they are often complicate, hard to understand, counter productive
to the user community.

Lets first examine quota-reporting utilities. For IBM’s General
Parallel File System (GPFS), the command mmlsquota is used

to display quota limits and usage.

For Lustre, quota information is obtained with the command
lfs quota.

While standard Linux utilizes the quota command.
$ quota Disk quotas for user juser (uid 500):
Filesystem blocks quota limit grace files quota limit grace
/dev/fs0 2 100 200 2 10 20

So now there are three different commands each with a different
syntax showing different information. Instructing users how to
interpret the results can be quite involved. This is especially true
when the data is closely examined to exactly what the users really
care about. At that level all that matters is what is being
consumed and what the limit is. Lustre is quite detailed in its
output and provides space consumption information down to the
Object Storage Target (OST). This presents a case of information
overload as file systems could have 100’s of OSTs and each one
represents one line of output. But the real question is do users
really need to see this.

nid00011:~> mmlsquota home1
 Block Limits | File Limits
Filesystem type KB quota limit in_doubt grace | files quota limit in_doubt grace Remarks
tlhome1 USR 29491548 41943040 41943040 34032 none | 7680 1000000 1000000 429 none fshost

nid00011:~> lfs quota -u juser /scratch
Disk quotas for user juser (uid 500):
 Filesystem kbytes quota limit grace files quota limit grace
 /scratch 2666948 0 0 83 0 0
sc-MDT0000_UUID 120 0 83 0
sc-OST0000_UUID 4 0
…

File system quota reporting also is highly dependant on the file
system architecture, and provides details unique to that file
system. GPFS provides the mmrepquota command producing:

Lustre provides no such reporting functionality. Standard Linux
provides the repquota command for reporting operations.
repquota /quota
*** Report for user quotas on device /dev/fs1
Block grace time: 7days; Inode grace time: 7day
 Block limits File limits
User used soft hard grace used soft hard grace
--
fuser1 -- 1204 0 0 5 0 0
fuser2 -- 10 100 200 9 10 20

The more file systems types that are present on a system, the
bigger the problem becomes.

Along the same lines is that the actual underlying quotas are per
file system and cannot be aggregated across multiple file systems.
Users must be granted quotas on each individual file system and
managed by that file systems quota utilities.

Statement of Position
Quota utilities should be externalized from the products where
each vendor is encouraged to contribute to them to support their
file system. Furthermore, each vendor should supply a
standardized API call to retrieve or manipulate disk quotas. It is
recognized that each file system may need to present details not
applicable to other file systems. In this case, the utilities should
use extended flags to control the operation.

The application of disk quotas needs to be externalized from file
system. While the accumulation of accounting data needs to be
within each file system, the enforcement of quotas can be
externalized. This would allow for a single disk quota to span
multiple file systems regardless of file system type. A kernel
module could open the quota file, holding the file descriptor open
for a system call to access directly from within the file systems.

SUPPORTING DOCUMENTATION
Many quota operations can be easily externalized. Each of the file
systems mentioned already provide an API call that can be used to
retrieve or manipulate disk quotas. GPFS provides
gpfs_quotactl(), Lustre provides llapi_quotactl(),
and standard Linux provides quotactl(). This shows that the
underlying interface is already in place, but unique to that file
system. Linux already can differentiate between the file system
types. The mount table contains the field mnt_type, which
identifies the underlying file system. So why can’t a single form
of quotactl() which utilizes the mnt_type to differentiate
the file system types be put in place?

The answer is, it can.

User Quota Report
The first utility to make use of this capability essentially replaces
mmlsquota, lfs quota, and quota, with a single utility that
can display quota information to the users, regardless of file
system type.

In this example, the scratch and scratch2 file systems are Lustre,
while project, common, u1, and u2 are GPFS. This utility utilizes
getmntent() to read the mount table in order to access
mnt_type which is used to determine the file system type. Then

the appropriate quotactl() system call is
used to access the quota information for the
file system. The data is then normalized to a
consistent format and presented to the users.

File System Quota Report
Quota reporting at the file system level is very useful for
determining the top consumers of the resources. The issue of
different file systems reporting different information can be easily
overcome. However, the lack of the capability to simply loop
through all quota entries a major obstacle had to be overcome.
The solution used was to loop on all users to get their usage
information. The downside is that if a user is removed from the
system and is consuming resources, it will never be reported.

In a similar manner as in the user quota reporting utility,
statfs() is used to get the f_type of the file system. This is
then used to determine the correct quotactl() to use for that
file system. The user list is obtained simply by looping on
getpwent().
Filesystem: /scratch2
Report Type: Space
Report Date: Wed Sep 7 07:14:37 2011

 ---- Space (GBs) --- Inode ---
Username Usage Quota Usage Quota
-------- ------ ------ -------- --------
fuser1 8262 0 663560 0
fuser2 7824 0 225937 0
fuser3 5593 0 216674 0
fuser4 4548 0 111542 0
fuser5 2171 0 436872 0

The report can be sorted either by space or by inodes. Reported is
a simple and easy to read output that is the same regardless of file
system type.

Quotas Spanning File Systems
Enforcing file system quotas external to the file system opens up a
flexibility to customize the effects when quotas are reached as
well as the opportunity to span file systems. Normally quotas are
set up with a soft limit that can be exceeded for some grace period
while not exceeding a hard limit. The effect of reaching the hard
limit is usually the I/O being aborted with the error EDQUOT
(quota exceeded). Running a large-scale computation for several
days that aborts due to quota limits being reached seemed a bit
counter productive, not to mention the loss of valuable
computational time. Rather than to terminate the run, a better
solution would be to allow it to run to completion while
preventing further work from starting. A simple check at job
submission and another at job startup can prevent new work from
being submitted or started without the loss of computational time.

In addition to the flexibility in how to enforce quota limits, the
ability to combine usage information from multiple file systems is
enabled allowing for a single quota to span file systems. The

 Block Limits | File Limits
Name type KB quota limit in_doubt grace | files quota limit in_doubt grace
fuser1 USR 17684 41943040 4194304 0 none | 72 1000000 1000000 0 none
fuser2 USR 180 41943040 4194304 0 none | 32 1000000 1000000 0 none

Displaying quota usage for user fuser1:
 -------- Space (GB) -------- ----------- Inode -------------
FileSystem Usage Quota InDoubt Grace Usage Quota InDoubt Grace
---------- ------- ------- ------- ----- -------- -------- -------- -----
scratch 3 - - - 83 - - -
scratch2 24 - - - 334 - - -
project 0 - 0 - 1944 - 0 -
common 0 - 0 - 11 - 0 -
u1 28 40 0 - 7680 1000000 429 -
u2 0 40 0 - 2 1000000 0 -

 3

process is to simply retrieve the utilization from the desired file
systems, accumulate it, and then evaluate it. For batch jobs, this
can be performed in submit filters or prologues. This is in
production at job submission time. If users are over their quota,
they will receive a message:
ERROR: your current combined scratch space usage of 6 GBs exceeds
your quota limit of 4 GBs.

You are currently exceeding your disk quota limits. You will
not be able to submit batch jobs until you reduce your usage
to comply with your quota limits.

This change has improved the users experience on the system
while keeping resource consumption in check.

Externally to the file system, an infrastructure was needed to
support the ability to grant a quota that applies to all users, as well
as exceptions. Some projects simply require more storage
resources than is desired to grant to all users. Having a default
quota is easy as it is a value that applies to all users. The
challenge was the ability to override this while tracking those with
extended quotas.

Another utility was created to manage a data file used to track
quota extensions.

Not only are the new limits for space and inodes recorded, but also
the expiration dates for the extension as well as the problem
tracking ticket. From a single report, a clear understanding of all
existing quota extensions can be ascertained. A feature of this
utility is the ability to automatically remove expired quotas. Each

not via cron, the command is run to evaluate all quota extensions
and remove any that have expired.

Another feature that is targeted to improving the users experience
is the ability to inform if a quota extension is about to expire.
chquota: your 6 GB space quota on /scr expires on 09/09/11
(110901-000001)

The number in the parenthesis is the trouble ticket number
tracking the request. This can be placed in login scripts to inform
users each time they login to the system.

CONCLUSIONS
Simplifying disk quotas improves usability, reporting, and the
user’s experience on the system all while controlling consumption
of resources.

File system vendors should be encouraged to align their quota
implementations into a single command set of tools that provide a
consistent interface, regardless of file system type. Until that
happens, centers should adopt a plan to develop such tools as they
improve the user’s experience. Taking this one step further, all
centers should adopt the practice of putting these tools into service
creating consistency across centers. Many users perform their

calculations at several centers and having a
consistent set of tools will enhance their
ability to work effectively.

By externalizing disk quota enforcement to
job submission, users are forced to keep
their resource consumption in check without

the risk of losing a run due to quota limits. As a result, the
computational resources are much more effective as no time is lost
due to calculations being cut short when quota limits are hit.

> chquota -R

 --------- Space Quota --------- --------- Inode Quota ------------
Username Q GigaBs Expiration Ticket Inodes Expiration Ticket Filesystem
-------- - ------ ---------- ------------- --------- ---------- ------------- ----------
fuser1 U 10240 01/10/2012 110112-000033 5000000 01/10/2012 110112-000033 /scratch
fuser1 U 10240 11/15/2011 110714-000039 - --/--/---- - /scratch

