
N
ow is the tim

e

For all good m
en

To com
e to the aid

O
f their party

Q
U
ICKS

O
R
T
 IS

 O
PT

IM
A
L

R
obert S

edgew
ick

J
on B

entley

M
O
T
IV

A
T
IO

N

M
O

O
RE'S LA

W
: Processing Power D

oubles every 18 m
onths

but also:
 m

em
ory capacity doubles every 18 m

onths
 problem

 size expands to fill m
em

ory

Sedgewick's Corollary: N
eed Faster Sorts every 18 m

onths!
(annoying to wait longer, even to sort twice as m

uch, on new m
achine)

 old: N
 lg N

 new: (2N
 lg 2N

)/2 = N
 lg N

 + N

O
ther com

pelling reasons to study sorting
 cope with new languages, m

achines, and applications
 rebuild obsolete libraries
 intellectual challenge of basic research

Sim
ple fundam

ental algorithm
s: the ultim

ate portable software

void
quicksort(Item

a[],
int

l,
int

r)
{

int
i

=
l-1,

j
=

r;
Item

v
=

a[r];

if
(r

<=
l)

return;

for
(;;)

{

while

(a[++i]
<

v)
;

while

(v
<

a[--j])
if

(j
==

l)
break;

if

(i
>=

j)
break;

exch(a[i],

a[j]);

}

exch(a[i],
a[r]);

quicksort(a,

l,
i-1);

quicksort(a,

i+1,
r);

}

Q
uicksort

D
etail (?): H

ow to handle keys equal to the partitioning elem
ent

M
ETH

O
D

 A
: Put equal keys all on one side?

 N
O

: quadratic for n=1 (all keys equal)

M
ETH

O
D

 B: Scan over equal keys? (linear for n=1)

N
O

: quadratic for n=2

M
ETH

O
D

 C: Stop both pointers on equal keys?

YES: N
lgN

 guarantee for sm
all n, no overhead if no equal keys

4
9

4
4

1
4

4
4

9
4

4
1

4
1

4
4

4
1

4
4

4
9

4
9

4
4

1
4

1
1

4
4

4
1

4
1

1
4

4
1

1
1

1
4

4
4

1
4

1
4

4
4

Partitioning with equal keys

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

H
ow to handle keys equal to the partitioning elem

ent?

M
ETH

O
D

 C: Stop both pointers on equal keys?

YES: N
lgN

 guarantee for sm
all n, no overhead if no equal keys

M
ETH

O
D

 D
 (3-way partitioning): Put all equal keys into position?

yes, BU
T: early im

plem
entations cum

bersom
e and/or expensive

4
9

4
4

1
4

4
4

9
4

4
1

4
1

4
4

4
1

4
4

4
9

4
9

4
4

Partitioning with equal keys

H
ow to handle keys equal to the partitioning elem

ent?

4
9

4
4

1
4

4
4

9
4

4
1

4
1

1
4

4
4

4
4

4
4

4
4

9
9

Q
uicksort com

m
on wisdom

 (last m
illennium

}

1. M
ethod of choice in practice

 tiny inner loop, with locality of reference

 N
logN

 worst-case “guarantee” (random
ized)

 but use a radix sort for sm
all num

ber of key values

2. Equal keys can be handled (with care)

 N
logN

 worst-case guarantee, using proper im
plem

entation

3. Three-way partitioning adds too m
uch overhead

 “D
utch N

ational Flag” problem

4. A
verage case analysis with equal keys is intractable

 keys equal to partitioning elem
ent end up in both subfiles

Changes in Q
uicksort com

m
on wisdom

1. Equal keys abound in practice.

 never can anticipate how clients will use library

 linear tim
e required for huge files with few key values

2. 3-way partitioning is the m
ethod of choice.

 greatly expands applicability, with little overhead

 easy to adapt to m
ultikey sort

 no need for separate radix sort

3. A
verage case analysis already done!

 Burge, 1975

 Sedgewick, 1978

 A
llen, M

unro, M
elhorn, 1978

Bentley-M
cIlroy 3-way partitioning

equal less greater equal

 m
ove from

 left to find an elem
ent that is not less

 m
ove from

 right to find an elem
ent that is not greater

 stop if pointers have crossed
 exchange
 if left elem

ent equal, exchange to left end
 if right elem

ent equal, exchange to right end

Partitioning invariant

Swap equals to center after partition

 less equal greater

KEY FEA
TU

RES
always uses N

-1 (three-way) com
pares

no extra overhead if no equal keys
only one “extra” exchange per equal key

void
quicksort(Item

a[],
int

l,
int

r)
{

int
i

=
l-1,

j
=

r,
p

=
l-1,

q
=

r;
Item

v
=

a[r];

if
(r

<=
l)

return;

for
(;;)

{

while

(a[++i]
<

v)
;

while

(v
<

a[--j])
if

(j
==

l)
break;

if

(i
>=

j)
break;

exch(a[i],

a[j]);

if
(a[i]

==
v)

{
p++;

exch(a[p],
a[i]);

}

if
(v

==
a[j])

{
q--;

exch(a[j],
a[q]);

}

}

exch(a[i],
a[r]);

j
=

i-1;
i

=
i+1;

for

(k
=

l;
k

<
p;

k++,
j--)

exch(a[k],
a[j]);

for

(k
=

r-1;
k

>
q;

k--,
i++)

exch(a[i],
a[k]);

quicksort(a,

l,
j);

quicksort(a,

i,
r);

}

Q
uicksort with 3-way partitioning

Inform
ation-theoretic lower bound

D
efinition: A

n

€

(x1 ,x2 ,...,xn)-file has

€

N
=

x1
+

x2
+...+

xn keys,

 n distinct key values, with

€

xi ≡ num
ber of occurences of the i-th sm

allest key

€

pi ≡
xi

N

TH
EO

REM
. A

ny sorting m
ethod uses at least

€

N
H
−

N
 com

pares (where

€

H
=
−

pk lgpk
1≤k≤n

∑
 is the entropy)

to sort an

€

(x1 ,x2 ,...,xn)-file, on the average.

Inform
ation-theoretic lower-bound proof

€

C
>

lg
N

!
x1 !x2 !...xn ! =

lgN
!−lgx1 !−lgx2 !−...−

lgxn !

€

C
>

N
lgN

−
N
−

x1 lgx1
−

x2 lgx2
−

...−
xn lgxn

€

=
(x1

+...+
xn)lgN

−
N
−

x1 lgx1
−

x2 lgx2
−

...−
xn lgxn

=
N

H
−

N

By Stirling’s approxim
ation,

A
vg. num

ber of com
pares is m

inim
ized when tree is balanced

N
um

ber of leaves m
ust exceed num

ber of possible files

€

N
x1 x2 ...xn

 =
N

!
x1 !x2 !...xn !

 1<2?
 2<3? 1<3?
 1<2<3 1<3? 2<1<3 2<3?
 1<3<2 3<1<2 2<3<1 3<2<1

D
ECISIO

N
 TREE describes all possible sequences of com

parisons

€

C(1,n)
=

N
−

1
+

1N
x

j (C(1,j−
1)+

C(j+
1,n))

1≤j≤n
∑

A
nalysis of Q

uicksort with equal keys

€

N
C(1,n)

=
N

(N
−

1)+
x

j C(1,j−
1)+

x
j

1≤j≤n
∑

C(j+
1,n)

1≤j≤n
∑

€

(x1
+

...+
xn)D(1,n)

=
x1 2

−
x1

+
2x1 (x

2
+...+

xn)+
x

j D(1,j−
1)

2
≤j≤n
∑

€

(x1
+

...+
xn)D(1,n)−

(x1
+

...+
xn−1)D(1,n

−
1)
=

2x1 xn
+

xn D
(1,n

−
1)

1. D
efine

€

C(x1 ,...,xn)
≡

C(1,n) to be the m
ean #

 com
pares to sort the file

3. Subtract sam
e equation for

€

x2 ,...,xn and let

€

D(1,n)
≡

C(1,n)−
C(2,n)

2. M
ultiply both sides by

€

N
=

x1
+...+

xn

4. Subtract sam
e equation for

€

x1 ,...,xn−1

€

D(1,n)
=

D
(1,n

−
1)+

2x1 xn
x1

+...+
xn

A
nalysis of Q

uicksort with equal keys (cont.)

€

(x1
+

...+
xn)D(1,n)−

(x1
+

...+
xn−1)D(1,n

−
1)
=

2x1 xn
+

xn D
(1,n

−
1)

5. Sim
plify, divide both sides by

€

N
=

x1
+...+

xn

6. Telescope (twice)

TH
EO

REM
. Q

uicksort (with 3-way partitioning, random
ized) uses

€

N
−

n
+

2Q
N

 com
pares (where

€

Q
=

pk pj
pk

+...+
pj

1≤k<j≤n
∑

, with

€

pi =
xi

N
)

to sort an

€

(x1 ,...,xn)−file, on the average .

€

C(1,n)
=

N
−

n
+

2xk x
j

xk
+...+

x
j

1≤k<j≤n
∑

€

Q
=

1n
1≤k<n
∑

1
j−

k
+

1
k<j≤n
∑

=
lnn

+
O

(1)

Basic properties of quicksort “entropy”

Exam
ple: all frequencies equal (

€

pi =
1

n)

€

Q
=

pk pj
pk

+...+
pj

1≤k<j≤n
∑

Conjecture: Q
 m

axim
ized when all keys equal?

N
O

:

€

Q
=

.4444... for

€

x1
=

x2
=

x3
=

N
/3

€

Q
=

.4453... for

€

x1
=

x3
=

.34N
,

x2
=

.32N

with

€

pi =
xi

N

€

Q
=

pk
1≤k<n
∑

pj
pk

+...+
pj

k<j≤n
∑

U
pper bound on quicksort “entropy”

1. Separate double sum

€

Q
=

pk pj
pk

+...+
pj

1≤k<j≤n
∑

2. Substitute

€

qij
=

(pi +
...+

pj)
pi (note:

€

1
=

qii ≤
qi(i+1)

≤
...≤

qin
<

1
pi)

3. Bound with integral

€

Q
=

pk
1≤k<n
∑

qkj
−

qk(j−1)
qkj

k<j≤n
∑

€

Q
=

pk
1≤k<n
∑

1x
q

kk

q
kn

∫
dx

<
pk lnqkn

<
pk (−lnpk)

=
H

ln2
1≤k≤n
∑

1≤k<n
∑

Q
uicksort is optim

al

The average num
ber of com

pares per elem
ent C/N

 is always
 within a constant factor of the entropy H
 lower bound:

€

C
>

N
H
−

N
 (inform

ation theory)
 upper bound:

€

C
<

2ln2N
H
+

N
 (Burge analysis, M

elhorn bound)

N
o com

parison-based algorithm
 can do better.

Conjecture: W
ith sam

pling,

€

C
/

N
→

H
 as sam

ple size increases.

Extensions and applications
O

ptim
ality of Q

uicksort
underscores intrinsic value of algorithm
resolves basic theoretical question

A
nalysis shows Q

uicksort to be sorting m
ethod of choice for

 random
ly ordered keys, abstract com

pare
 sm

all num
ber of key values

Extension 1: A
dapt for varying key length`

 M
ultikey Q

uicksort
 SO

RTIN
G m

ethod of choice: (Q
/H

)N
lgN

 byte accesses
Extension 2: A

dapt algorithm
 to searching

 Ternary search trees (TSTs)
 SEA

RCH
IN

G m
ethod of choice: (Q

/H
)lgN

 byte accesses

Both conclusions validated by
Flajolet, Clèm

ent, Valeé analysis
practical experience

References

A
llen and M

unro, Self-organizing search trees, JA
CM

, 1978

H
oare, Q

uicksort, Com
puter Journal, A

pril 1962

Clam
pett, Random

ized binary searching with trees, CA
CM

, M
arch 1964

Knuth, The A
rt of Com

puter Program
m

ing, vol. 3, A
ddison-W

esley, 1975

Sedgewick, Q
uicksort with equal keys, SICO

M
P, June 1977

W
egner, Q

uicksort for equal keys, IEEE Trans. on Com
puters, A

pril 1985

Bentley and M
cIlroy, Engineering a sort function,

 Software Practice and Experience, Jan. 1993

Bentley and Sedgewick, Sorting/searching strings, SO
D

A
, January 1997

 and D
r. D

obbs Journal, A
pril and N

ovem
ber, 1998

Clem
ent, Flajolet, and Vallee, A

nalysis of Tries, A
lgorithm

ica, 1999

