List of Projects Not Reviewed | Project ID | Project Title | Principal
Investigator
Name | Organization | |------------|---|-----------------------------------|---| | BES-001 | Overview of the BES Hydrogen Storage
Activities | John Vetrano | U.S. Department of Energy,
Office of Basic Energy Sciences | | BES-002 | From Fundamental Understanding to
Predicting New Nanomaterials for High-
Capacity Hydrogen Storage | Taner Yildrim | National Institute of Standards and Technology | | BES-003 | Novel Theoretical and Experimental Approaches for Understanding and Optimizing Hydrogen-Sorbent Interactions in Metal Organic Framework Materials | Yves Chabal | University of Texas at Dallas | | BES-004 | Design and Synthesis of Chemically and
Electronically Tunable Nanoporous
Organic Polymers for Use in Hydrogen
Storage Applications | Hani El-Kaderi | Virginia Commonwealth
University | | BES-005 | Atomistic Mechanisms of Metal-
Assisted Hydrogen Storage in
Nanostructured Carbons | Nidia Gallego | Oak Ridge National Laboratory | | BES-006 | Elucidation of Hydrogen Interaction
Mechanisms with Metal-Doped Carbon
Nanostructures | Ragaiy Zidan | Savannah River National
Laboratory | | BES-007 | Synthetic Design of New Metal-Organic
Framework Materials for Hydrogen
Storage | Pingyun Feng | University of California,
Riverside | | BES-008 | New Pathways and Metrics for
Enhanced, Reversible Hydrogen Storage
in Boron-Doped Carbon Nanospaces | Peter Pfeifer | University of Missouri-Columbia | | BES-009 | Novel Molecular Materials for
Hydrogen Storage Applications | Maddury
Somayazulu | Carnegie Institute of Washington | | BES-010 | Energy Storage in Clathrate Hydrogen
Material | Carolyn Koh | Colorado School of Mines | | BES-011 | Hydrogen Caged in Carbon—
Exploration of Novel Carbon-Hydrogen
Interactions | Angela Lueking | Pennsylvania State University | | BES-012 | Complex Hydrides - A New Frontier for Future Energy Applications | Vitailij Pecharsky | Ames Laboratory | | BES-013 | Atomistic Transport Mechanisms in Aluminum-Based Hydrides | Jason Graetz | Brookhaven National Laboratory | | Project ID | Project Title | Principal
Investigator
Name | Organization | |------------|--|-----------------------------------|--| | BES-014 | Kinetics and Thermodynamics of Metal and Complex Hydride Nanoparticles | Chris Wolverton | Northwestern University | | BES-015 | Computational Studies of Hydrogen
Interactions with Storage Materials | Chris Van de
Walle | University of California, Santa
Barbara | | BES-016 | Discovery of a New Species in the Hydrogen Chemistry of NaAlH ₄ in <i>In Situ</i> NMR | Mark Conradi | Washington University in St.
Louis | | BES-019 | Activation of Hydrogen with Bi-
Functional Ambiphillic Catalyst
Complexes | Tom Autrey | Pacific Northwest National
Laboratory | | BES-020 | Heavy Cycloadditions: Reactions of Digallene with Cyclic Polyolefins | Philip Power | University of California, Davis | | BES-021 | Ammonia-Borane: A Promising
Material for Hydrogen Storage | Larry Sneddon | University of Pennsylvania | | BES-023 | Ammonia-Borane under High Pressure | Jiuhua Chen | Florida International University | | ST-018 | Improving Porosity and H2-Affinity of
Porous Framework Materials | Joe Zhou | Texas A&M University | | ST-031 | Advanced, High-Capacity Reversible
Metal Hydrides | Craig Jensen | University of Hawaii | | ST-034 | Aluminum Hydride | Jim Wegrzyn | Brookhaven National Laboratory | | ST-038 | Hydrogen Storage by Novel CBN
Heterocycle Materials | Shih-Yuan Liu | University of Oregon | | ST-052 | Best Practices for Characterizing
Engineering Properties of Hydrogen
Storage Materials | Karl Gross | H2 Technology Consulting LLC | | ST-063 | Electrochemical Reversible Formation of Alane | Ragaiy Zidan | Savannah River National
Laboratory | | ST-085 | Glasses and Nanocomposites for
Hydrogen Storage | Kristina Lipinska-
Kalita | University of Nevada, Las Vegas | | Project ID | Project Title | Principal
Investigator
Name | Organization | |------------|---|-----------------------------------|---| | ST-100 | Hydrogen Storage Cost Analysis,
Preliminary Results | Brian James | Strategic Analysis, Inc. | | ST-101 | Enhanced Materials and Design
Parameters for Reducing the Cost of
Hydrogen Storage Tanks | Kevin Simmons | Pacific Northwest National
Laboratory | | ST-102 | Room Temperature Hydrogen Storage in Nano-Confined Liquids | John Vajo | HRL Laboratories, LLC | | ST-103 | Hydrogen Storage in Metal-Organic
Frameworks | Jeffrey Long | Lawrence Berkeley National
Laboratory | | ST-104 | Novel Carbon (C)-Boron (B)-Nitrogen (N)-Containing H2 Storage Materials | Shih-Yuan Liu | University of Oregon | | ST-105 | Ultra Lightweight High Pressure
Hydrogen Fuel Tanks Reinforced with
Carbon Nanotubes | Dongsheng Mao | Applied Nanotech, Inc. | | ST-106 | Alternative Fiber Evaluation and Optimization of Filament Winding | Mark Leavitt | Quantum Fuel Systems
Technologies Worldwide | | ST-107 | The Quantum Effects of Pore Structure on Hydrogen Adsorption | Raina Olsen | Oak Ridge National Laboratory | | PD-020 | Inexpensive Delivery of Cold Hydrogen
in Glass Fiber Composite Pressure
Vessels | Andrew Weisberg | Lawrence Livermore National
Laboratory | | PD-051 | Surface Validation: Physical and
Electronic Characterization of Materials
for Photoelectrochemical Hydrogen
Production | Clemens Heske | University of Nevada, Las Vegas | | PD-052 | PEC Materials: Theory and Modeling | Muhammad Huda | University of Texas at Arlington | | PD-056 | Critical Research for Cost-Effective
Photoelectrochemical Production of
Hydrogen | Liwei Xu | Midwest Optoelectronics, LLC | | PD-058 | Characterization and Optimization of
Photoelectrode Surfaces for Solar-to-
Chemical Fuel Conversion | Tadashi Ogitsu | Lawrence Livermore National
Laboratory/National Renewable
Energy Laboratory | | PD-076 | Photoelectrochemical Generation of
Hydrogen from Water Using Nanotube-
Based Semiconductor Systems for
Improved Visible Light Activity | Mano Misra | University of Nevada, Reno | | PD-077 | Solar Energy Utilization | Ravi Subramanian | University of Nevada, Reno | | Project ID | Project Title | Principal
Investigator
Name | Organization | |------------|---|-----------------------------------|--| | PD-082 | Process Intensification of Hydrogen
Unit Operations Using an
Electrochemical Device | Glenn Eisman | H2 Pump LLC | | PD-085 | Hour-by-Hour Cost Modeling of
Optimized Central Wind-Based Water
Electrolysis Production | Chris Ainscough | National Renewable Energy
Laboratory | | PD-089 | H2A Hydrogen Production Analysis
Model Version 3 | Darlene Steward | National Renewable Energy
Laboratory | | PD-090 | Low Cost Large Scale PEM Electrolysis for Renewable Energy Storage | Katherine Ayers | Proton OnSite | | FC-001 | Advanced Cathode Catalysts and
Supports for PEM Fuel Cells | Mark Debe | 3M | | FC-002 | Highly Dispersed Alloy Catalyst for Durability | Lesia Protsailo | UTC Power | | FC-011 | Molecular-scale, Three-dimensional
Non-Platinum Group Metal Electrodes
for Catalysis of Fuel Cell Reactions | John Kerr | Lawrence Berkeley National
Laboratory | | FC-015 | Improved Accelerated Stress Tests
Based on FCV Data | Timothy Patterson | UTC Power | | FC-025 | Air Cooled Stack Freeze Tolerance | Dave Hancock | Plug Power, Inc. | | FC-027 | Development and Validation of a Two-
phase, Three-dimensional Model for
PEM Fuel Cells | Ken Chen | Sandia National Laboratories | | FC-030 | Water Transport in PEM Fuel Cells:
Advanced Modeling, Material Selection,
Testing, and Design Optimization | Vernon Cole | CFD Research Corp. | | FC-031 | Development and Demonstration of a
New Generation High Efficiency 10kW
Stationary PEM Fuel Cell System | Durai Swamy | Intelligent Energy | | FC-035 | Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program | James Fenton | University of Central Florida | | FC-038 | NanoCapillary Network Proton
Conducting Membranes for High
Temperature Hydrogen/Air Fuel Cells | Peter Pintauro | Vanderbilt University | | FC-039 | Novel Approaches to Immobilized
Heteropoly Acid (HPA) Systems for
High Temperature, Low Relative
Humidity Polymer-Type Membranes | Andrew Herring | Colorado School of Mines | | Project ID | Project Title | Principal
Investigator
Name | Organization | |------------|---|-----------------------------------|---| | FC-040 | High Temperature Membrane with
Humidification-Independent Cluster
Structure | Ludwig Lipp | FuelCell Energy, Inc. | | FC-041 | Novel Approach to Advanced Direct
Methanol Fuel Cell Anode Catalysts | Huyen Dinh | National Renewable Energy
Laboratory | | FC-042 | Advanced Materials for RSOFC Dual
Operation with Low Degradation | Randy Petri | Versa Power | | FC-043 | Resonance-Stabilized Anion Exchange
Polymer Electrolytes | Yu Seung Kim | Los Alamos National Laboratory | | FC-051 | The Fuel Cell Testing at the Argonne
Fuel Cell Test Facility | Ira Bloom | Argonne National Laboratory | | FC-075 | Fuel Cell Balance of Plant Reliability
Testbed | Susan Shearer | Stark State College | | FC-097 | Stationery and Emerging Market Fuel
Cell System Cost Analysis | Kathya
Mahadevan | Battelle | | FC-098 | A Total Cost of Ownership Model for
Design and Manufacturing Optimization
of Fuel Cells in Stationary and
Emerging Market Applications | Max Wei | Lawrence Berkeley National
Laboratory | | FC-100 | High Aspect Ratio Nano-Structured Pt-
based PEM Fuel Cell Catalysts | Brian Larsen | National Renewable Energy
Laboratory | | MN-011 | Cause and Effect: Flow Field Plate
Manufacturing Variability and its
Impact on Performance | Eric Stanfield | National Institute of Standards and Technology | | TV-006 | Validation of an Integrated Hydrogen
Energy Station | Ed Heydorn | Air Products | | TV-007 | California Hydrogen Infrastructure
Project | Ed Heydorn | Air Products | | TV-009 | Hawaii Hydrogen Power Park | Richard Rocheleau | Hawaii Natural Energy Institute | | TV-014 | Sustainable Hydrogen Fueling Station,
California State University, Los Angeles | David Blekhman | Cal State LA University
Auxiliary Services, Inc. | | TV-016 | Stationary Fuel Cell Evaluation | Jennifer Kurtz | National Renewable Energy
Laboratory | | Project ID | Project Title | Principal
Investigator
Name | Organization | |------------|---|-----------------------------------|--| | TV-017 | Next Generation H2 Station Analysis | Sam Sprik | National Renewable Energy
Laboratory | | SCS-013 | International Energy Agency Hydrogen
Implementing Agreement Task 31
Hydrogen Safety | William Hoagland | Element One, Inc. | | ED-012 | State and Local Government Partnership | Joel Rinebold | Connecticut Center for Advanced Technology, Inc. | | ED-014 | H2L3: Hydrogen Learning for Local
Leaders | Patrick Serfass | Technology Transition
Corporation | | ED-017 | H2 Educate! Hydrogen Education for Middle Schools | Mary Spruill | National Energy Education
Development Project | | AN-028 | Evaluation of U.S. DOE Energy
Recovery Act Fuel Cell (Technologies
Program) Initiative (ARRA-FCI) | Toni Marechaux | Strategic Analysis, Inc. | | H2RA-004 | Advanced Direct Methanol Fuel Cell for
Mobile Computing | Jim Fletcher | University of North Florida | | H2RA-006 | PEM Fuel Cell Systems Providing Backup Power to Commercial Cellular Towers and an Electric Utility Communications Network | Mike Maxwell | ReliOn Inc. | | H2RA-009 | Fuel Cell-Powered Lift Truck FedEx
Freight Fleet Deployment | John King | FedEx Freight | | H2RA-010 | Fuel Cell-Powered Lift Truck Sysco
Houston Fleet Deployment | Scott Kliever | Sysco of Houston | | H2RA-011 | GENCO Fuel Cell Powered Lift Truck
Fleet Deployment | Jim Klingler | GENCO |