

Software Security Testing

Software Assurance Pocket Guide Series:
Development, Volume III
Version 0.7, May 10, 2010

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
1

Software Assurance (SwA) Pocket Guide Resources
This is a resource for ‘getting started’ in selecting and adopting relevant practices for delivering secure software. As part of the
Software Assurance (SwA) Pocket Guide series, this resource is offered for informative use only; it is not intended as directive or
presented as being comprehensive since it references and summarizes material in the source documents that provide detailed
information. When referencing any part of this document, please provide proper attribution and reference the source documents,
when applicable.

At the back of this pocket guide are references, limitation statements, and a listing of topics addressed in the SwA Pocket Guide
series. All SwA Pocket Guides and SwA-related documents are freely available for download via the SwA Community
Resources and Information Clearinghouse at Uhttps://buildsecurityin.us-cert.gov/swaU.

Executive Summary
Software security testing validates the secure implementation of a product thus reducing the likelihood of security flaws being
released and discovered by customers or malicious users. The goal of software security testing is to find vulnerabilities, keep
them from the final product, and confirm that the security of the software product is at an acceptable level. This pocket guide
describes the most effective security testing techniques, their strengths and weaknesses, and when to apply them during the
Software Development Life Cycle (SDLC).

Target Audience
This guide has been written with software developers in mind. It is meant as an introduction to the many techniques of software
security testing and how they can be applied throughout the SDLC. The goal is that the reader will use the information from this
guide, and the references it points to, to become more involved in the software security testing process.

Acknowledgements
SwA Pocket Guides are developed and socialized by the SwA community as a collaborative effort to obtain a common look and
feel and are not produced by individual entities. SwA Forum and Working Groups function as a stakeholder meta-community

https://buildsecurityin.us-cert.gov/swa�

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
2

that welcomes additional participation in advancing software security and refining. All SwA-related information resources that are
produced are offered free for public use. Inputs to documents for the online resources are invited. Please contact
USoftware.Assurance@dhs.govU for comments and inquiries. For the most up to date pocket guides, check the website at
Uhttps://buildsecurityin.us-cert.gov/swa/U.

The SwA Forum and Working Groups are composed of government, industry, and academic members and focuses on
incorporating SwA considerations in the acquisition and development processes relative to potential risk exposures that could be
introduced by software and the supply chain.
Participants in the SwA Forum’s Processes & Practices Working Group collaborated with the Technology, Tools and Product
Evaluation Working Group in developing the material used in this pocket guide as a step in raising awareness on how to
incorporate SwA throughout the SDLC.
Information contained in this pocket guide is primarily derived from “Enhancing the Development Life Cycle to Produce
Secure Software” and other documents listed in the Resources box that follows.

Special thanks to the Department of Homeland Security (DHS) National Cyber Security Division's Software Assurance team who
provided much of the support to enable the successful completion of this guide and related SwA documents. Additional thanks to
the EC-Council for their input and review of the material.

Overview

Security testing of software is performed regardless of the type of functionality that software implements. Its function is to assess
the security properties and behaviors of that software as it interacts with external entities (human users, its environment, and
other software), and as its own components interact with each other.

Resources
» Enhancing the Development Life Cycle to Produce Secure Software”, DHS SwA Forum Process and

Practices Working Group, 2008; at https://buildsecurityin.us-cert.gov/swa/procwg.html.
» “Software Security Assurance: A State-of-the-Art Report”, Goertzel, Karen Mercedes, et al,

Information Assurance Technology Analysis Center (IATAC) of the DTIC at
http://iac.dtic.mil/iatac/download/security.pdf.

» “Multi-perspective Application Security Risk Analysis: A Toolbox Approach”, Sean Barnum, et al,
March 2009.

» “OWASP Testing Guide v3”, The Open Web Application Security Project at
http://www.owasp.org/index.php/Category:OWASP_Testing_Project#OWASP_Testing_Guide_v3_2.

» “Fundamental Practices for Secure Software Development: A Guide to the Most Effective Secure
Development Practices in Use Today”, The Software Assurance Forum for Excellence in Code
(SAFECode), 2008 at http://www.safecode.org/publications/SAFECode_Dev_Practices1008.pdf.

» ‘Microsoft Security Development Lifecycle (SDL) – Process Guidance” at
http://msdn.microsoft.com/en-us/library/84aed186-1d75-4366-8e61-8d258746bopq.aspx.

» “Software Security: Being Secure in an Insecure World”, Mano Paul, (ISC)2..

mailto:Software.Assurance@dhs.gov�
https://buildsecurityin.us-cert.gov/swa/�
https://www.thedacs.com/techs/enhanced_life_cycles�
https://www.thedacs.com/techs/enhanced_life_cycles�
https://www.thedacs.com/techs/enhanced_life_cycles�
https://buildsecurityin.us-cert.gov/swa/procwg.html�
http://iac.dtic.mil/iatac/download/security.pdf�
http://www.owasp.org/index.php/Category:OWASP_Testing_Project#OWASP_Testing_Guide_v3_2�
http://www.safecode.org/publications/SAFECode_Dev_Practices1008.pdf�
http://www.safecode.org/publications/SAFECode_Dev_Practices1008.pdf�
http://www.safecode.org/publications/SAFECode_Dev_Practices1008.pdf�
http://msdn.microsoft.com/en-us/library/84aed186-1d75-4366-8e61-8d258746bopq.aspx�

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
3

The objectives of software security testing are threefold:

» To verify that the software’s dependable operation continues even under hostile conditions, such as receipt of attack-

patterned input, and intentional (attack-induced) failures in
environment components;

» To verify the software’s trustworthiness, in terms of its consistently
safe behavior and state changes, and its lack of exploitable flaws
and weaknesses; and

» To verify the software’s survivability, by verifying that its anomaly,
error, and exception handling can recognize and safely handle all
anticipated security-relevant exceptions and failures, errors, and
anomalies; this means minimizing the extent and damage impact
that may result from intentional (attack-induced) failures in the
software itself, and preventing the emergence of new
vulnerabilities, unsafe state changes, etc. Secure software should not react to anomalies or intentional faults by throwing
exceptions that leave it in an unsafe (vulnerable) state.

Software security testing is predicated on the notion of “tester-as-attacker.” The test scenarios themselves should be based on
misuse and abuse cases, and should incorporate known attack patterns as well as anomalous interactions that seek to invalidate
assumptions made by and about the software and its environment.

Software Security Testing vs.
Security Requirements Testing

Software security testing is not the same as testing the correctness and
adequacy of security functions implemented by software, which are most
often verified through requirements-based testing. While such tests are
important, they reveal only a small piece of the picture needed to verify
the security of the software.

Unfortunately, no amount of requirements-based testing can fully
demonstrate that software is free from vulnerabilities. Nor is
requirements-based testing the best approach to determining how
software will behave under anomalous and hostile conditions. This is because even the most robustly-specified security
requirements are unlikely to address all possible conditions that the software may be forced to operate in the real world. First, at
least some of the assumptions under which the requirements were originally specified are very likely to be obsolete by the time
the software is ready for testing. This is due, in part, to the changing nature of the threats to the software, and the new attack
strategies and assistive technologies that have emerged with the potential to target its vulnerabilities. These factors change
often, and at a speed that is much quicker than any specification can match. Second, if the software contains acquired
components, the versions actually included in the implemented system may be different than those imagined when the software
was architected. The new versions may contain more, fewer, and/or different vulnerabilities than those that shaped the
assumptions under which the software was developed. For all these reasons, requirements-based testing should always be
augmented with software security testing.

Security Testing Verifies that the Software:
» Behavior is predictable and secure,
» Exposes no vulnerabilities or weaknesses,
» Error and exception handling routines enable

it to maintain a secure state,
» Satisfies all of its specified and implicit

nonfunctional security requirements, and
» Does not violate any specified security

constraints.

Useful Security Testing Techniques:
» Risk analysis,
» Code reviews,
» Automated static analysis,
» Source & binary code fault injection,
» Binary code analysis,
» Vulnerability scanning,
» Fuzz testing, and
» Penetration testing.

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
4

The Case for Software Security Testing

Today’s society is heavily dependent on software. Many business activities and critical functions such as national defense,
banking, healthcare, telecommunications, aviation and control of hazardous materials depend upon the correct, predictable
operation of software. This extreme reliance on software makes it a high-value target for those who wish to exploit or sabotage
such activities and functions, whether for financial gain, political or military advantage, to satisfy ideological imperatives, or out of
simple malice.

The presence of flaws and defects makes software a target for attackers. Software flaws and defects can cause software to
behave incorrectly and unpredictably, even when it is used purely as its designers intended. Moreover, a number of software
flaws and defects can be intentionally exploited by attackers to subvert the way the software operates—making it untrustworthy—
or to sabotage the software’s ability to operate—making it
undependable.

The question is when, not if, a particular software system will be
attacked. The following statistics highlight the severity of this problem:

» 80% of organizations will experience an application security
incident by 2010 (Gartner),

» 90% of web sites are vulnerable to attacks (Watchfire), and
» 75% of attacks are directed at the application layer (Gartner).

There are multiple costs associated with insecure software that are not
easily quantifiable. A security breach can lead to loss of reputation, loss
of customer trust, fines, recovery costs, and liability exposure for the
victimized organization due to insecure software. But the more
damaging issue will be to regain the confidence of the organization’s
customers. David Rice, former NSA cryptographer and author of
Geekonomics: The Real Cost of Insecure Software, approximates
that the total economic cost of security flaws is around US $180 billion a year, as reported on Forbes.com. While the economics
of software assurance can be extrapolated from the aggregate amount of fines levied on organizations that have experienced a
breach due to insecure software, it still does not provide a complete view of the cost of insecure software. The real cost, not as
neatly quantifiable, is the extent of reputational damage and loss of customer trust.

Software security testing, code reviews and risk analysis are some of the most effective methods for identifying software
weaknesses and vulnerabilities.

What to Test

It can be helpful to think of software development as a combination of people, processes, and technology. If these are the
factors that "create" software, then it is logical that these are the factors that must be tested. Today most people generally test
the technology or the software functionality itself.

An effective testing program should have components that test People – to ensure that there are adequate education and
awareness; Processes – to ensure that there are adequate policies and standards and that people know how to follow these
policies; and Technology – to ensure that the processes have been effective in their implementation. Unless a holistic approach
is adopted, testing just the technical implementation of software will not uncover management or operational vulnerabilities that

Software threats can occur:
» During development: A developer may

corrupt the software intentionally or
unintentionally.

» During deployment: Those responsible
for distributing the software may fail to
tamperproof it.

» During operation: Any software system
that runs on a network-connected
platform will have its vulnerabilities
exposed during its operation.

» During sustainment: Discovered
vulnerabilities in released software are
not issued patches or updates in a timely
manner to correct those vulnerabilities.

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
5

could be present. By testing the people, processes and technology, an organization can catch issues that would later manifest
themselves into defects in the technology, thus eradicating bugs early and identifying the root causes of defects. Likewise,
testing only some of the technical issues that can be present in a system will result in an incomplete and inaccurate security
posture assessment.

Test Planning

Understand the Subject - One of the first steps in developing a security test plan should be to require accurate documentation
of the software. The architecture, data-flow diagrams, use cases, and more should be written in formal documents and made
available for review. The technical specification and software documents should include information that lists not only the
desired use cases, but also any specifically disallowed use cases.

If only the compiled executable and vendor-provided documentation are available, the tester will need to infer much of the
information he/she needs by extrapolating it from observations of how the executing software behaves under as many conditions
and inputs as can be exercised during testing.

A key goal of the test planner, then, will be to define the combination of tests, test scenarios, and test data that will reveal
sufficient information about the software to enable the tester to make reliable judgments about how secure it will be once
deployed.

The misuse and abuse cases and attack/threat models developed early in
the SDLC also provides basis for developing appropriately comprehensive
and revealing security test scenarios, test cases, and test oracles. As
noted earlier, attack patterns can provide the basis for much of the
malicious input incorporated into those cases and models.

The test environment should duplicate as closely as possible the
anticipated execution environment in which the software will be deployed.
The test environment should be kept entirely separate from the
development environment. All test data, testing tools, integrated test
environment, etc., as well as the test plan itself and all test results (both
raw results and test reports) should be maintained under strict
configuration management control to prevent tampering or corruption.

A single test method cannot identify all the different type of software vulnerabilities so it is crucial to obtain the right tool set and
test technique. A combination of different test techniques and tool sets with complementing characteristics provides the best
chance to obtain the greatest depth and breadth of coverage.

On-line Resources
» NIST SAMATE Tool Survey at http://samate.nist.gov/index.php/Main_Page.html.
» Metasploit exploit generation tool and library at http://www.metasploit.com/.

The test plan should include:
» Security test cases and scenarios

based on the misuse/abuse cases,
» Test data (both meaningful and

fuzzed),
» Identification of the test tools and

integrated test environment or
“ecosystem,”

» Pass/fail criteria for each test, and
» Test report template. This should

enable capture and analysis of test
results and of actions for addressing
failed tests.

https://www.thedacs.com/techs/enhanced_life_cycles�
http://samate.nist.gov/index.php/Main_Page.html�
http://www.metasploit.com/�

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
6

Test Timing

Historically, problems found early in the SDLC are significantly easier and less costly to correct than problems discovered post-
implementation or, worse, post-deployment. A thorough regiment of security reviews and tests should begin as early in the
SDLC as is practicable, and should continue iteratively until the operational software is “retired.”

Figure 1 shows a suggested distribution of different security test techniques throughout various life cycle phases.

Risk Analysis

Risk analysis should be conducted during the design phase of development to carefully review security requirements and to
identify security risks. It is an efficient way to identify and address these risks during the design phase.

For security concerns, threat modeling is a systematic process that is used to identify threats and vulnerabilities in software.
Threat modeling has become a popular technique to help system designers think about the security threats that their system
might face. Therefore, threat modeling can be seen as risk assessment for software development. In fact, it enables the

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
7

designer to develop mitigation strategies for potential vulnerabilities and helps them focus their limited resources and attention on
the parts of the system most at risk. It is recommended that all applications have a threat model developed and documented.
Threat models should be created as early as possible in the SDLC, and should be revisited as the application evolves and
development progresses. To develop a threat model, implement a simple approach that follows the NIST 800-30 [11] standard
for risk assessment. This approach involves:

» Decomposing the application – understand, through a process of manual inspection, how the application works, its
assets, functionality, and connectivity.

» Defining and classifying the assets – classify the assets into tangible and intangible assets and rank them according
to business importance.

» Exploring potential vulnerabilities - whether technical, operational, or management.
» Exploring potential threats – develop a realistic view of potential attack vectors from an attacker’s perspective, by

using threat scenarios or attack trees.
» Creating mitigation strategies – develop mitigating controls for each of the threats deemed to be realistic. The

output from a threat model itself can vary but is typically a collection of lists and diagrams. The OWASP Code Review
Guide Uhttp://www.owasp.org/index.php/Application_Threat_ModelingU outlines a methodology that can be used as a
reference for the testing for potential security flaws.

Some people within the SwA community recommend threat modeling training before developing any models. Others such as
Microsoft provide a free threat modeling tool available for downloading at Uhttp://msdn.microsoft.com/en-
us/security/dd206731.aspxU that is not specifically designed for security experts. It can be used by developers with limited threat
modeling experience by providing guidance on creating and analyzing threat models.

Code Review

Source code review (also known as static analysis) is the process of manually checking source code for security weaknesses.
Many serious security vulnerabilities cannot be detected with any
other form of analysis or testing. Most security experts agree that
there is no substitute for actually looking at code for detecting subtle
vulnerabilities. Unlike testing third party closed software such as
operating systems, when testing applications (especially if they
have been developed in-house) the source code should be made
available for testing purposes. Many unintentional but significant
security problems are also extremely difficult to discover with other
forms of analysis or testing, such as penetration testing, making
source code analysis the technique of choice for technical testing.

 With the source code, a tester can accurately determine what is
happening (or is supposed to be happening) and remove the guess
work of black box testing. Examples of issues that are particularly conducive to being found through source code reviews include

On-line Resources
» The Microsoft Security Development Lifecycle (SDL): Training and Resources at

http://msdn.microsoft.com/en-us/security/cc448120.aspx.
» “Threat Modeling: Diving into the Deep End”, Jeffrey A. Ingalsbe, et al, at https://buildsecurityin.us-

cert.gov/daisy/bsi/resources/articles/932-BSI.html, IEEE Software, January/February 2008.

Code Review Advantages:
» Completeness and effectiveness, and
» Accuracy.

Code Review Disadvantages:
» Not practical for large code bases,
» Requires highly skilled reviewers,
» Labor intensive, and
» Difficult to detect runtime errors.

http://www.owasp.org/index.php/Application_Threat_Modeling�
http://msdn.microsoft.com/en-us/security/dd206731.aspx�
http://msdn.microsoft.com/en-us/security/dd206731.aspx�
http://msdn.microsoft.com/en-us/security/cc448120.aspx�
https://buildsecurityin.us-cert.gov/daisy/bsi/resources/articles/932-BSI.html�
https://buildsecurityin.us-cert.gov/daisy/bsi/resources/articles/932-BSI.html�

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
8

concurrency problems, flawed business logic, access control problems, and cryptographic weaknesses as well as backdoors,
Trojans, Easter eggs, time bombs, logic bombs, and other forms of malicious code. These issues often manifest themselves as
the most harmful vulnerabilities in web sites. Source code analysis can also be extremely efficient to find implementation issues
such as sections of the code where input validation was not performed or where fail open control procedures may be present.
Operational procedures need to be reviewed as well, since the source code being deployed might not be the same as the one
being analyzed.

Code review is highly labor intensive, but can, when reviewers with appropriate levels of experience perform the review, produce
the most complete, accurate results early in the review process, before the reviewer fatigues. It is common for the reviewer to
begin by very meticulously checking every line of code, then to gradually skip larger and larger portions of code, so that by the
end of the review, the inconsistent and decreasing amount of “code coverage” is inadequate to determine the true nature of the
software. It is important to note, that as the size of the code-base increases it becomes less feasible to perform a complete
manual review. In such cases, it may be beneficial to perform a semi-automated review, with manual reviews being performed
on critical subsets of the code base.

Code reviews are also useful for detecting indicators of the presence of malicious code. For example, if the code is written in C,
the reviewer might seek out comments that indicate exploit features, and/or portions of code that are complex and hard-to-follow,
or that contain embedded assembler code (e.g., the _asm_ feature, strings of hexadecimal or octal characters/values).

Other things to look for during code review include:

» Presence of developer backdoors and implicit and explicit debug commands. Implicit debug commands are seemingly

innocuous elements added to the source code to make it easier for the developer to alter the software’s state while testing; if
these commands are left in the software’s comment lines they may be exploitable after the software has been compiled and
deployed.

» Unused calls that don’t accomplish anything during system execution, such as calls invoking environment-level or

middleware-level processes or library routines that are not expected to be present in the installed target environment.

Automated Static Analysis

Automated static analysis is any analysis that examines the
software without executing it, and it involves the use of a static
analysis tool. In most cases, this means analyzing the program’s
source code, although there are a number of tools for static
analysis of binary executables. Because static analysis does not
require a fully integrated or installed version of the software, it
can be performed iteratively throughout the software’s
implementation. Automated static analysis does not require any
test cases and does not know what the code is intended to do.
The main objective of static analysis is to discover security flaws
and to identify their potential fixes. The static analysis tool output
should provide enough detailed information about the software’s
possible failure points to enable its developer to classify and
prioritize the software’s vulnerabilities based on the level of risk
they pose to the system.

Static analysis testing should be performed as early and as often
in the life cycle as possible. The most effective tests are
performed on granularly small code units—individual modules or functional-process units—which can be corrected relatively

Static Analysis Advantages:
» Faster than Code Review,
» Complete, consistent coverage,
» Detection of “low hanging fruit” type flaws,
» Efficient for large code bases, and
» Results easier to decipher for less skilled

security reviewers.

Static Analysis Disadvantages:
» Large number of false positives,
» False negatives,
» Inability to detect subtle errors,
» Results review is labor intensive, and
» Inability to detect runtime errors.

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
9

easily and quickly before they are added into the larger code base. Iteration of reviews and tests ensures that flaws within
smaller units will be dealt with before the whole system code review, which can then focus on the “seams” between code units,
which represent the relationships among and interfaces between components.

Static analysis tools are effective at detecting language rules violations such as buffer overflows, incorrect use of libraries, type
checking and other flaws. Static analysis tools can scan very large code bases in a relative short time when compared to other
techniques. The reviewer’s job is limited to running the tool and interpreting its results. Static analysis tools are not sophisticated
enough to detect anomalies that a human reviewer would notice. Static analysis tools can provide additional benefits, by
allowing developers to run scans as they are developing—addressing potential security vulnerabilities early in the process.
Similarly, the level of expertise required for an automated review is less than that required for a manual review. In many cases,
the tool will provide detailed information about the vulnerability found, including suggestions for mitigation.

Static analysis tools have several limitations including:
» Limited number of path to analyze since a full exploration of all possible paths through the program could be very resource

intensive.
» Third party code – If part of a source code is not available, such as library code, OS, etc., the tool has to make assumptions

about how the missing code operates.
» Inability to detect unexpected flaws - Flaw categories must be predefined.
» Inability to detect architectural errors.
» Inability to detect system administration or user mistakes.
» Inability to find vulnerabilities introduced or exacerbated by the execution environment.
» Inability to support novice code reviewers, i.e., those without profound understanding of the security implications of software

coding constructs.

One of the primary concerns with static analysis tools is assessing their accuracy and generation of false positives. In most
situations, the accuracy of any analysis tool revolves around its false negative (i.e., vulnerabilities overlooked by the tool) and
false positive (i.e., false alarms produced by the tool) rates. Some tools that employ aggressive algorithms generate a large
amount of false positives that require manual verification by the reviewer that can be time consuming. Most of the algorithms or
rules used by these tools can be tailored to reduce the false positive rate at the expense of increasing the false negative rate or
vice-versa. When relying on these tools to generate evidence to support assurance case, the reviewer must provide strong
evidence that the tool was used correctly and in a way that ensured that the number of false negatives and false positives were
minimized, and the maximum number of true results was discovered.

There are several metrics to assess the performance of the tools that also helps in understanding their limitations. Recall is
measured as the number of flaws detected by the tool divided by all the flaws present in the code. Precision is the ratio of true
positives to all the flaws reported. A number of resources are available to aid in this regard. The NIST Software Assurance
Metrics And Tool Evaluation (SAMATE) project has defined the draft NIST SP 500-268, Source Code Security Analysis Tool
Functional Specification, which identifies a set of requirements against which source code analysis tools can be measured.
Additionally, SAMATE has released the draft NIST SP 500-270, Source Code Security Analysis Tool Test Plan, which provides
insight into using the SAMATE Reference Dataset (SRD), which is a compilation of insecure code examples, against which users
can run multiple source code analysis tools and compare their results to get a better understanding of their comparative
strengths and weaknesses.

On-line Resources
» “The Use and Limitations of Static Analysis Tools to Improve Software Quality”, Paul Anderson,

Grammatech, Inc.at http://www.stsc.hill.af.mil/crosstalk/2008/06/0806Anderson.html.
“Source Code Analysis Tools – Overview”, Michael, et al, Cigital, Inc., at al, at
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/code/263-BSI.html.

» The NIST Software Assurance Metrics And Tool Evaluation (SAMATE) project at
http://samate.nist.gov/index.php/Main_Page.html.

http://www.stsc.hill.af.mil/crosstalk/2008/06/0806Anderson.html�
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/code/263-BSI.html�
https://www.thedacs.com/techs/enhanced_life_cycles�
http://samate.nist.gov/index.php/Main_Page.html�

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
10

Source Code Fault Injection
0BSource code fault injection is a testing technique originated by the software safety community. It is used to induce stress in the
software, create interoperability problems among components, simulate faults in the execution environment, and thereby reveal
safety-threatening faults that are not made apparent by traditional testing techniques. Security fault injection extends standard
fault injection by adding error injection, thus enabling testers to analyze the security of the behaviors and state changes that result
in the software when it is exposed to various perturbations of its environment data. These data perturbations are intended to
simulate the types of faults that would result during unintentional user errors as well as intentional attacks on the software via its
environment, as well as attacks on the environment itself. A data perturbation is simply the alteration of the data the execution
environment passes to the software, or that one software component passes to another. Fault injection can reveal both the effects
of security faults on individual component behaviors, and the behavior of the system as a whole. Also analyzed during source
code fault injection are the ways in which faults propagate through the source code.

Fault propagation analysis involves two source code fault injection techniques: extended propagation analysis and interface
propagation analysis. The objective of both techniques is to trace how state changes resulting from a given fault propagate
through the source code tree. To prepare for fault propagation analysis, the tester must generate a fault tree from the program’s
source code. To perform an extended propagation analysis, the tester injects faults into the fault tree, then traces how each
injected fault propagates through the tree. From this, one can extrapolate outward to anticipate the overall impact a particular
fault may have on the behavior of the software as a whole.

In interface propagation analysis, the focus is shifted from perturbing the source code of the module or component itself to
perturbing the states that propagate via the interfaces between the module/component and other application-level and
environment-level components. As with source code fault injection, in interface propagation analysis anomalies are injected into
the data feeds between components, enabling the tester to view how the resulting faults propagate and to discovery whether any
new anomalies result. In addition, interface propagation analysis enables the tester to determine how a failure of one component
may affect neighboring components, which is a particularly important determination to make for components that either provide
protections to or rely on protections from others.

Source code fault injection is particularly useful in detecting incorrect use of pointers and arrays, use of dangerous calls, and
race conditions. Like all source code analyses, source code fault injection is most effective when used iteratively throughout the
code implementation process. When new threats (attack types and intrusion techniques) are discovered, the source code can be
re-instrumented with faults representative of those new threat types.

Binary Fault Injection

Binary fault injection is most useful when performed as an adjunct to security penetration testing to enable the tester to obtain a
more complete picture of how the software responds to attacks.

On-line Resources
» Ollmann, Gunter. “Second-order Code Injection: Advanced Code Injection Techniques and Testing

Procedures”. Undated whitepaper posted on his Weblog at
http://www.technicalinfo.net/papers/SecondOrderCodeInjection.html.

http://www.technicalinfo.net/papers/SecondOrderCodeInjection.html�

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
11

Software programs interact with their execution environment though operating system calls, remote procedure calls, application
programmatic interfaces, man machine interfaces, etc. Binary fault injection involves monitoring the fault injected software’s
execution at runtime. For example, by monitoring system call traces, the tester can decipher the names of system calls (which
reveal the types of resources being accessed by the calling software); the parameters to each call (which reveal the names of the
resources, usually in the first parameter, and how the resources are being used); and the call’s return code/value (which reveals
success or failure of the access attempt).

In binary fault injection, faults are injected into the environment resources that surround the program. Environmental faults in
particular are useful to simulate because they are most likely to reflect real world attack scenarios. However, injected faults
should not be limited to those simulating real world attacks. As with penetration testing, the fault injection scenarios exercised
should be designed to give the tester as complete as possible an understanding of the security of the behaviors, states, and
security properties of the software system under all possible operating conditions.

Environment perturbation via fault injection provides the tester with several benefits:

» The ability to simulate environment anomalies without understanding how those anomalies occur in the real world. This

enables fault injection by testers who do not have a deep knowledge of the environment whose faults are being simulated.
Fault injection can emulate environment anomalies without needing reference to how those anomalies occur in the real
world.

» The tester can decide which environment faults to emulate at which times, thus avoiding the problem that arises when doing
a full environment emulation in which the environment state, when the software interacts with it, may not be what is
expected, or may not have the expected effect on the software’s behavior.

» Unlike penetration tests, fault injection tests can be automated with relative ease.

Binary fault injection tools include source and binary fault injectors and brute force testers. The main challenges in fault injection
testing are determining the most meaningful number and combination of faults to be injected and, as with all tests, interpreting
the results. Also, just because a fault injection does not cause the software to behave in a non-secure manner, or fail into a non-
secure state, the tester cannot interpret this to mean that the software will be similarly “well-behaved” when exposed to the more
complex inputs it typically receives during operational execution. For this reason, security tests that are performed with the
software deployed in its actual target environment (e.g., penetration tests and vulnerability scans) are critical for providing a
complete picture of how the software will behave under such conditions.

On-line Resources
» Wysopal, Chris, et al. “Testing Fault Injection in Local Applications”. SecurityFocus, 23 January 2007

(excerpt from The Art of Software Security Testing) at http://www.securityfocus.com/infocus/1886.
» Du, Wenliang and Aditya P. Mathur. “Vulnerability Testing of Software Systems Using Fault Injection”.

Technical Report COAST TR98-02, 6 April 1998 at
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/98-02.pdf.

» Sivaramakrishnan, Hariharan. On the Use of Fault Injection to Discover Security Vulnerabilities in
Applications. University of Maryland master of science thesis, May 2006 at
https://drum.umd.edu/dspace/bitstream/1903/3566/1/umi-umd-3404.pdf.

http://www.securityfocus.com/infocus/1886�
https://www.cerias.purdue.edu/tools_and_resources/bibtex_archive/archive/98-02.pdf�
https://drum.umd.edu/dspace/bitstream/1903/3566/1/umi-umd-3404.pd�

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
12

Fuzz Testing

Fuzz testing inputs random invalid data (usually produced by modifying valid input) to the software under test via its environment
or via another software component. The term fuzzing is derived from the fuzz utility (ftp://grilled.cs.wisc.edu/fuzz), which is a
random character generator for testing applications by injecting random data at their interfaces [Miller 90]. In this narrow sense,
fuzzing means injecting noise at program interfaces. Fuzz testing is implemented by a program or script that submits a
combination of inputs to the software to reveal how that software responds. The idea is to look for interesting program behavior
that results from noise injection and may indicate the presence of a vulnerability or other software fault.
Fuzzers are generally specific to a particular type of input, such as HTTP input, and are written to test a specific program; they
are not easily reusable. Their value is their specificity, because they can often reveal security vulnerabilities that generic testing
tools such as vulnerability scanners and fault injectors cannot.

Fuzzing might be characterized as a blind fishing expedition that hopes to uncover completely unsuspected problems in the
software. For example, suppose the tester intercepts the data that an application reads from a file and replaces that data with
random bytes. If the application crashes as a result, it may indicate that the application does not perform needed checks on the
data from that file but instead assumes that the file is in the right format. The missing checks may (or may not) be exploitable by
an attacker who exploits a race condition by substituting his or her own file in place of the one being read, or an attacker who has
already subverted the application that creates this file.
For many interfaces, the idea of simply injecting random bits works poorly. For example, presenting a web interface with the
randomly generated URL “Ax@#1ZWtB.” Since this URL is invalid, it will be rejected more or less immediately, perhaps by a
parsing algorithm relatively near to the interface. Fuzzing with random URLs would test that parser extensively, but since
random strings are rarely valid URLs, this approach would rarely test anything else about the application. The parser acts as a
sort of artificial layer of protection that prevents random strings from reaching other interesting parts of the software.
Completely random fuzzing is a comparatively ineffective way to uncover problems in an application. Fuzzing technology (along
with the definition of fuzzing) has evolved to include more intelligent techniques. For example, fuzzing tools are aware of
commonly used Internet protocols, so that testers can selectively choose which parts of the data will be fuzzed. These tools also
generally let testers specify the format of test data, which is useful for applications that do not use one of the standard protocols.
These features overcome the limitation of fuzzing. In addition, fuzzing tools often let the tester systematically explore the input
space. The tester is able to specify a range of input values instead of having to rely on randomly generated noise.

 Resources
» Sutton, Michael, Adam Greene, and Pedram Amini. Fuzzing: Brute Force Vulnerability Discovery.

Indianapolis, Indiana: Addison-Wesley Professional, 2007.
» [Miller 90] Miller, Barton P.; Fredriksen, Lars; & So, Bryan. “An empirical study of the reliability of UNIX

utilities.” Communications of the ACM 33, 12 (December 1990): 32-44.
» BuildSecurityIn, Black Box Security Testing Tools at https://buildsecurityin.us-

cert.gov/daisy/bsi/articles/tools/black-box/261-BSI.html.

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/black-box/261-BSI.html�
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/black-box/261-BSI.html�

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
13

Binary Code Analysis

 Binary code analysis uses tools that support reverse engineering and analysis of binary executables such as decompilers,
disassemblers, and binary code scanners, reflecting the varying degrees of reverse engineering that can be performed on
binaries.

The least intrusive technique is binary scanning. Binary scanners, analyze machine code to model a language-neutral
representation of the program’s behaviors, control and data flows, call trees, and external function calls. Such a model may then
be traversed by an automated vulnerability scanner in order to locate vulnerabilities caused by common coding errors and simple
back doors. A source code emitter can use the model to generate a human-readable source code representation of the
program’s behavior, enabling manual code review for design level security weaknesses and subtle back doors that cannot be
found by automated scanners.

The next least intrusive technique is disassembly, in which binary code is reverse engineered to intermediate assembly
language. The disadvantage of disassembly is that the resulting assembler code can only be meaningfully analyzed by an
expert who both thoroughly understands that particular assembler language and who is skilled in detecting security-relevant
constructs within assembler code;

The most intrusive reverse engineering technique is decompilation, in which the binary code is reverse engineered all the way
back to source code, which can then be subjected to the same security code review techniques and other white box tests as
original source code. Note, however, that decompilation is technically problematical: the quality of the source code generated
through decompilation is often very poor. Such code is rarely as navigable or comprehensible as the original source code, and
may not accurately reflect the original source code. This is particularly true when the binary has been obfuscated or an
optimizing compiler has been used to produce the binary. Such measures, in fact, may make it impossible to generate
meaningful source code. In any case, the analysis of decompiled source code will always be significantly more difficult and time
consuming than review of original source code. For this reason, decompilation for security analysis only makes sense for the
most critical of high consequence components.

Reverse engineering may also be legally prohibited. Not only do the vast majority of software vendors’ license agreements
prohibit reverse engineering to source code and assembler) form, software vendors have repeatedly cited the Digital Millennium
Copyright Act (DMCA) of 1999 to reinforce such prohibitions, even though the DMCA explicitly exempts reverse engineering as
well as “encryption research” (which involves intentional breaking of encryption applied to the software being reverse engineered)
from its prohibitions against copy protection circumvention.

Resources
» Eliam, Eldad. Reversing: Secrets of Reverse Engineering. Indianapolis, Indiana: Wiley Publishing, 2005.
» McGraw, Gary and Greg Hoglund. “Chapter 3: Reverse Engineering and Program Understanding”

(excerpt from Exploiting Software: How to Break Code at http://www.amazon.com/Exploiting-Software-
Break-Addison-Wesley-Security/dp/0201786958/ref=pd_sim_b_title_3.

» Wysopal,Chris. “Putting trust in software code”. USENIX ;login:, Volume 29, Number 6, December 2004
at http://www.usenix.org/publications/login/2004-12/pdfs/code.pdf.

http://www.amazon.com/Exploiting-Software-Break-Addison-Wesley-Security/dp/0201786958/ref=pd_sim_b_title_3�
http://www.amazon.com/Exploiting-Software-Break-Addison-Wesley-Security/dp/0201786958/ref=pd_sim_b_title_3�
http://www.usenix.org/publications/login/2004-12/pdfs/code.pdf�

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
14

Vulnerability Scanning

Automated vulnerability scanning is supported for application level software, as well as for Web servers, database management
systems, and some operating systems. Application vulnerability scanners can be useful for software security testing. These
tools scan the executing application software for input and output of known patterns that are associated with known
vulnerabilities. These vulnerability patterns, or “signatures”, are comparable to the signatures searched for by virus scanners, or
the “dangerous coding constructs” searched for by automated source code scanner, making the vulnerability scanner, in
essence, an automated pattern-matching tool.

While they can find simple patterns associated with vulnerabilities, automated vulnerability scanners are unable to pinpoint risks
associated with aggregations of vulnerabilities, or to identify vulnerabilities that result from unpredictable combinations of input
and output patterns.

In addition to signature-based scanning, some Web application vulnerability scanners attempt to perform “automated stateful
application assessment” using a combination of simulated reconnaissance attack patterns and fuzz testing techniques to “probe”
the application for known and common vulnerabilities. Like signature-based scans, stateful assessment scans can detect only
known classes of attacks and vulnerabilities.

Most vulnerability scanners do attempt to provide a mechanism for aggregating vulnerability patterns. The current generation of
scanners is able to perform fairly unsophisticated analyses of risks associated with aggregations of vulnerabilities. In many
cases, especially with commercial-off-the-shelf (COTS) vulnerability scanners, the tools also provide information and guidance
on how to mitigate the vulnerabilities they detect.

Typical application vulnerability scanners are able to identify only some of the types of vulnerabilities that exist in large
applications: they focus on vulnerabilities that need to be truly remediated versus those that can be mitigated through patching.
As with other signature-based scanning tools, application vulnerability scanners can report false positives, unless recalibrated by
the tester. The tester must have enough software and security expertise to meaningfully interpret the scanner’s results to weed
out the false positives and negatives, so as not to identify as a vulnerability what is actually a benign issue, and not to ignore a
true vulnerability that has been overlooked by the tool. This is why it is important to combine different tests techniques to
examine the software for vulnerabilities in a variety of ways, none of which is adequate on its own, but which in combination can
greatly increase the likelihood of vulnerabilities being found.

Because automated vulnerability scanners are signature-based, as with virus scanners, they need to be frequently updated with
new signatures from their vendor. Two important evaluation criteria for selecting a vulnerability scanner are: (1) how extensive
the tool’s signature database is, and (2) how often the supplier issues new signatures.

Vulnerability scanners are most effective when used:

» During the security assessment of binary components;

» Before penetration testing, in order to locate straightforward common vulnerabilities, and thereby eliminate the need to run
penetration test scenarios that check for such vulnerabilities.

In the software’s target environment, vulnerabilities in software are often masked by environmental protections such as network-
and application-level firewalls. Moreover, environment conditions may create novel vulnerabilities that cannot be found by a
signature-based tool, but must be sought using a combination of other black box tests, most especially penetration testing of the
deployed software in its actual target environment.

In addition to application vulnerability scanners, there are scanners for operating systems, databases, web servers, and
networks. Most of the vulnerabilities checked by these other scanners focus on configuration deficiencies and information
security vulnerabilities (e.g., data disclosed that should not be). However, these scanners do often look for conditions such as
buffer overflows, race conditions, privilege escalations, etc., at the environment level that can have an impact on the security of

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
15

the software executing in that environment. Therefore, it is a good idea to run execution environment scanners with an eye
towards observing problems at the environment’s interfaces with the hosted application, in order to get an “inside out” view of
how vulnerabilities in the environment around the application may be exploited to “get at” the application itself.

Penetration Testing

Penetration testing, also known as ethical hacking, is a common technique for testing network security. While penetration testing
has proven to be effective in network security, the technique does not naturally translate to applications. Penetration testing is,
for the purposes of this guide, the “art” of testing a running application in its “live” execution environment to find security
vulnerabilities. Penetration testing observes whether the system resists attacks successfully, and how it behaves when it cannot
resist an attack. Penetration testers also attempt to exploit vulnerabilities that they have detected and ones that were detected in
previous reviews.

Types of penetration testing include black-box, white box and grey box. In black-box penetration testing, the testers are given no
knowledge of the application. White-box penetration is the opposite of black-box in that complete information about the
application may be given to the testers. Grey-box penetration testing, the most commonly used, is where the tester is given the
same privileges as a normal user to simulate a malicious insider.

Penetration testing should focus on those aspects of system behavior, interaction, and vulnerability that cannot be observed
through other tests performed outside of the live operational environment. Penetration testers should subject the system to
sophisticated multi-pattern attacks designed to trigger complex series of behaviors across system components, including non-
contiguous components. These are the types of behaviors that cannot be forced and observed by any other testing technique.
Penetration testing should also attempt to find security problems that are likely to originate in the software‘s architecture and
design (versus coding flaws that manifest as vulnerabilities), as it is this type of vulnerability that tends to be overlooked by other
testing techniques.

The penetration test plan should include “worst case” scenarios that reproduce threat vectors (attacks, intrusions) that are
considered highly damaging, such as insider threat scenarios. The test plan should capture:

» The security policy the system is supposed to respect or enforce,
» Anticipated threats to the system, and
» The sequences of likely attacks that are expected to target the system.

On-line Resources
» BuildSecurityIn Black Box Testing tools resources at https://buildsecurityin.us-

cert.gov/daisy/bsi/articles/tools/black-box.html.
» Anantharaju, Srinath. “Automating Web application security testing”. Google Online Security Blog, 16

July 2007 at http://googleonlinesecurity.blogspot.com/2007/07/automating-web-application-
security.html.

» Suto, Larry. “Analyzing the Effectiveness and Coverage of Web Application Security Scanners”.
October 2007 at http://www.stratdat.com/webscan.pdf.

» Grossman, Jeremiah. “The Best Web Application Vulnerability Scanner in the World”. On his Weblog,
23 October 2007 at http://jeremiahgrossman.blogspot.com/2007/10/best-web-application-
vulnerability.html.

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/black-box.html�
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/black-box.html�
http://googleonlinesecurity.blogspot.com/2007/07/automating-web-application-security.html�
http://googleonlinesecurity.blogspot.com/2007/07/automating-web-application-security.html�
http://www.stratdat.com/webscan.pdf�
http://jeremiahgrossman.blogspot.com/2007/10/best-web-application-vulnerability.html�
http://jeremiahgrossman.blogspot.com/2007/10/best-web-application-vulnerability.html�

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
16

The Rules of Engagement (ROE), is an essential piece of the penetration test plan. The ROE is the agreement between the
testers, the application’s administrators, the system owners (management of the target application or system) and any
stakeholders deemed key. The ROE describes the limitations, scope, and controls to be placed around the testing activities.
Establishing an ROE ensures that the signatories are aware and agree on what will take place during the penetration test. The
ROE protects the testers from liability provided they stay within the confines of the agreement. The ROE is a living document, but
all signatories must approve any amendments.

Testers usually start by gathering information about the target through Internet searches, newspapers, third party sources and
spidering (automated browsing and downloading website pages). After that, the tester will often try querying for known vulnerable
scripts or components, and all points of user input to test for flaws like SQL injection, cross-site scripting, cross-site request
forgery (CSRF), command execution, etc. The testers will usually use an application scanner or a web application assessment
proxy to perform these techniques. A combination of fuzzing and injection of strings known to cause error conditions may also be
used. In addition to these technical penetration testing techniques, the tester may also try to hack the application by using social
engineering techniques. These include dumpster diving, and phishing.

Many developers use application penetration testing as their primary security testing technique. While it certainly has its place in
a testing program, application penetration testing should not be considered the primary or only testing technique. Penetration
testing can lead to a false sense of security. Just because an application passes penetration testing does not mean that it is free
of vulnerabilities. Conversely, if an application fails penetration, there is a strong indication that there are serious problems that
should be mitigated.

Interpreting and Using Test Results

As soon as each test is completed, test results and the exact version of the software artifact tested should be checked in to the
configuration management system.

The results of the requirements- and software security testing regimen should provide adequate information for the software’s
developers to:

» Identify missing security requirements that need to be evaluated to determine the risk posed to the software if those

requirements are not added to the specification and the software is not modified to implement them. These could include

Resources
» BuildSecurityIn Penetration Testing resources. Accessed 20 May 2009 at https://buildsecurityin.us-

cert.gov/daisy/bsi/articles/best-practices/penetration.html.
» Andreu, Andres. Professional Pen Testing for Web Applications. Indianapolis, Indiana: Wiley

Publishing, 2006.
» Thompson, Herbert H. “Application Penetration Testing”. IEEE Security and Privacy, Volume 3

Number 1, January/February 2005, pages 66-69.
» Build Security In: Penetration Testing Tools resources. Accessed 27 January 2010 at

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/penetration.html
» Licensed Penetration Tester Methodology. EC-Council (http://www.eccouncil.org/).
» Decker, Matthew J. “Penetration Testing: Not Just a Hack Job”. Apr. 2004. Accessed 1 February 2010

at http://www.agilerm.net/pdfs/ISSA-Journal-Article-June2004.pdf.

https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/penetration.html�
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/penetration.html�
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/tools/penetration.html�
http://www.agilerm.net/pdfs/ISSA-Journal-Article-June2004.pdf�

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
17

requirements for constraints, countermeasures, or protections to eliminate or mitigate weaknesses, vulnerabilities, and
unsafe behaviors/state changes; and

» Determine the amount and nature of reengineering (or refactoring) needed to satisfy the new requirements.

Note that just because software successfully passes all of its security tests, this does not mean that novel attack patterns and
anomalies will never arise in deployment to compromise the software. For this reason, iterative testing throughout the software’s
life time is imperative to ensure that its security posture does not degrade over time.

In terms of providing meaningful security measures for risk management, the aggregation of test results should provide an
indication of whether the software is able to resist, withstand, and/or recover from attacks to the extent that risk can be said to be
mitigated to an acceptable level. This is the best that can be achieved given the current state of the art of software security test
technique and tools.

Conclusion
This pocket guide compiles effective software security testing techniques and offers guidance on when they should be employed
during the SDLC. The material in this pocket guide can also be used as a modified template for implementing software security
testing and as a measure of how an enterprise’s methods stack up against the industry’s known best practices.

The Software Assurance Pocket Guide Series is developed in collaboration with the SwA Forum and Working Groups and
provides summary material in a more consumable format. The series provides informative material for SwA initiatives that seek
to reduce software vulnerabilities, minimize exploitation, and address ways to improve the routine development, acquisition and
deployment of trustworthy software products. Together, these activities will enable more secure and reliable software that
supports mission requirements across enterprises and the critical infrastructure.
For additional information or contribution to future material and/or enhancements of this pocket guide, please consider joining
any of the SwA Working Groups and/or send comments to USoftware.Assurance@dhs.govU. SwA Forums are open to all
participants and free of charge. Please visit Uhttps://buildsecurityin.us-cert.govU for further information.

No Warranty

This material is furnished on an “as-is” basis for information only. The authors, contributors, and participants of the SwA Forum
and Working Groups, their employers, the U.S. Government, other participating organizations, all other entities associated with
this information resource, and entities and products mentioned within this pocket guide make no warranties of any kind, either
expressed or implied, as to any matter including, but not limited to, warranty of fitness for purpose, completeness or
merchantability, exclusivity, or results obtained from use of the material. No warranty of any kind is made with respect to
freedom from patent, trademark, or copyright infringement. Reference or use of any trademarks is not intended in any way to
infringe on the rights of the trademark holder. No warranty is made that use of the information in this pocket guide will result in
software that is secure. Examples are for illustrative purposes and are not intended to be used as is or without undergoing
analysis.

Reprints

mailto:Software.Assurance@dhs.gov�
https://buildsecurityin.us-cert.gov/�

Software Assurance Pocket Guide Series:
Development, Volume III – Version 0.7, May 10, 2010

Software Security Testing
18

Any Software Assurance Pocket Guide may be reproduced and/or redistributed in its original configuration, within normal
distribution channels (including but not limited to on-demand Internet downloads or in various archived/compressed formats).
Anyone making further distribution of these pocket guides via reprints may indicate on the pocket guide that their organization
made the reprints of the document, but the pocket guide should not be otherwise altered. These resources have been developed
for information purposes and should be available to all with interests in software security.
For more information, including recommendations for modification of SwA pocket guides, please contact
USoftware.Assurance@dhs.govU or visit the Software Assurance Community Resources and Information Clearinghouse:
Uhttps://buildsecurityin.us-cert.gov/swaU to download this document either format (4”x8” or 8.5”x11”).

Software Assurance (SwA) Pocket Guide Series

SwA is primarily focused on software security and mitigating risks attributable to software; better enabling resilience in
operations. SwA Pocket Guides are provided; with some yet to be published. All are offered as informative resources; not
comprehensive in coverage. All are intended as resources for ‘getting started’ with various aspects of software assurance. The
planned coverage of topics in the SwA Pocket Guide Series is listed:

SwA in Acquisition & Outsourcing
I. Software Assurance in Acquisition and Contract Language

II. Software Supply Chain Risk Management & Due-Diligence
SwA in Development

I. Integrating Security into the Software Development Life Cycle
II. Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses
III. Software Security Testing
IV. Requirements & Analysis for Secure Software
V. Architecture & Design Considerations for Secure Software

VI. Secure Coding & Software Construction
VII. Security Considerations for Technologies, Methodologies & Languages

SwA Life Cycle Support
I. SwA in Education, Training & Certification

II. Secure Software Distribution, Deployment, & Operations
III. Code Transparency & Software Labels
IV. Assurance Case Management
V. Assurance Process Improvement & Benchmarking

VI. Secure Software Environment & Assurance Ecosystem
VII. Penetration Testing throughout the Life Cycle

SwA Measurement & Information Needs
I. Making Software Security Measurable

II. Practical Measurement Framework for SwA & InfoSec
III. SwA Business Case & Return on Investment

SwA Pocket Guides and related documents are freely available for download via the DHS NCSD Software Assurance
Community Resources and Information Clearinghouse at Uhttps://buildsecurityin.us-cert.gov/swaU.

mailto:Software.Assurance@dhs.gov�
https://buildsecurityin.us-cert.gov/swa�
https://buildsecurityin.us-cert.gov/swa�

	Source code fault injection is a testing technique originated by the software safety community. It is used to induce stress in the software, create interoperability problems among components, simulate faults in the execution environment, and thereby reveal safety-threatening faults that are not made apparent by traditional testing techniques. Security fault injection extends standard fault injection by adding error injection, thus enabling testers to analyze the security of the behaviors and state changes that result in the software when it is exposed to various perturbations of its environment data. These data perturbations are intended to simulate the types of faults that would result during unintentional user errors as well as intentional attacks on the software via its environment, as well as attacks on the environment itself. A data perturbation is simply the alteration of the data the execution environment passes to the software, or that one software component passes to another. Fault injection can reveal both the effects of security faults on individual component behaviors, and the behavior of the system as a whole. Also analyzed during source code fault injection are the ways in which faults propagate through the source code.

