Software Assurance (SwA) Checklist for Software Supply Chain Risk Management Software Assurance Forum Processes and Practices Working Group Agenda - Problem - Maturity Model Crosswalk - Mapped Maturity Models - SwA Checklist - Design - Establishing a Baseline - Challenges - Questions #### **Problem** - Acquiring or developing secure software requires a robust set of processes throughout the lifecycle. - How does an organization know it is: - Working with suppliers supporting similar assurance goals? - Implementing practices that address assurance goals? - Who is doing them? - How frequently? - Are they done well? - Are the practices reducing risk? - Improving its assurance capabilities? Global Software Supply Chain Risks - Software must be able to withstand use, abuse, and attack. - Software will probably be used longer than intended in ways for which it was not designed. - Risks can stem from actions by suppliers and their respective supply chains. - Mitigating risks requires understanding and management of suppliers' capabilities, products, and services. "Fit for Purpose" Testing - Developers assume the role of an acquirer when they: - Reuse their own code - Reuse legacy code or code from other projects - Draw upon open source libraries - Reused code may re-introduce old bugs and add new ones - Code must be tested to determine it is "fit for purpose" in new projects Taking a Comprehensive SwA Approach - Don't wait for a SwA mandate. - Organizations must: - Manage and execute a risk-driven, yet rugged, robust, and thorough software lifecycle process - Focus on implementing the practices that address their assurance goals based upon their risk appetite - Add security "gates" throughout the software lifecycle - Not all gates need to be pass/fail, some can just measure - Ensure the entire organization is aware and on board (including CXOs, acquisitions, developers, managers, quality testers, etc.) - Perform necessary due diligence appropriate to the desired assurance level ### Challenges - Organizations that are ready to improve their assurance capabilities may not be aware of how to begin an <u>organized</u> security initiative. - Several maturity models are freely available - Learning curves may inhibit adoption - Finding the right model(s) can be time consuming - Selecting model components can be difficult - Each model has a different approach and level of granularity # SOFTWARE ASSURANCE FORUM BUILDING SECURITY IN Maturity Model Crosswalk - Performed a model-agnostic analysis of several freely available maturity models - Identified agreements and differences among the models - Provided a consolidated view of how the models address similar assurance goals and practices # BUILDING SECURITY IN Mapped Maturity Models - The maturity models mapped within the crosswalk include: - Building Security In Maturity Model (BSIMM) - Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI) for Acquisitions - OWASP Open Software Assurance Maturity Model (SAMM) - SwA Forum Processes and Practices Working Group Assurance Process Reference Model (PRM) - CERT Resilience Management Model (RMM) **BSIMM** - Scientific observationbased descriptive model - Uniquely qualified to be used as a measuring stick for software security **BSIMM** Based upon analysis of the software security initiatives of 30+ organizations including: | Adobe | AON | Bank of
America | The Depository Trust & Clearing Corporation (DTCC) | | | | | | |----------|----------------|--------------------|--|--|--|--|--|--| | EMC | Google | Intel | Microsoft | | | | | | | Nokia | QUALCOMM | Sallie Mae | SWIFT | | | | | | | Symantec | Telecom Italia | VMware | Wells Fargo | | | | | | http://www.bsimm.com CMMI for Acquisitions - CMMI-ACQ provides guidance to acquisition organizations for initiating and managing the acquisition of products and services - Used to guide process improvement initiatives across a project, a division, or an entire organization. CMMI for Acquisitions - Helps to: - Integrate traditionally separate organizational functions - Set process improvement goals and priorities - Provide guidance for quality processes - Provide a point of reference for appraising current processes - Designed to support the future integration of other disciplines. www.sei.cmu.edu/cmmi/ # BUILDING SECURITY IN OpenSAMM Open framework to help organizations formulate and implement a strategy for software security that is tailored to the specific risks facing the organization. **OpenSAMM** OpenSAMM can be utilized by small, medium, and large organizations using any style of development. Can be applied organization-wide, for a single line-of-business, or individual projects. www.opensamm.org Assurance PRM - The Assurance PRM contains a set of assurance goals and supporting practices. - SwA Forum Processes & Practices Working Group synthesized from the contributions of leading government and industry experts. Assurance PRM - Assurance for CMMI® defines the Assurance Thread for Implementation and Improvement of Assurance Practices that are assumed when using the CMMI-DEV. - Understanding gaps helps suppliers and acquirers prioritize organizational efforts and funding to implement improvement actions. https://buildsecurityin.us-cert.gov/swa/proself_assm.html Assurance PRM Tool - The SwA Self-Assessment incorporates the Assurance PRM goals and practices - Provides an assessment framework of the implementation of assurance practices - Contains mappings to other freely available maturity models https://buildsecurityin.us-cert.gov/swa/proself_assm.html **CERT RMM** - Process improvement model - Addresses the convergence of security, business continuity, and IT operations to manage operational risk and establish operational resilience Supplies a process improvement approach through the definition and application of a capability level scale that expresses increasing levels of process improvement #### **CERT RMM** - Based upon the Resiliency Engineering Framework (REF) - The REF described the range of processes that characterize the organizational capabilities necessary to actively direct, control, and manage operational resilience. - The REF has been used by Financial Services Technology Consortium organizations to: - Benchmark their performance against the framework to characterize industry performance - Validate the framework - Begin process improvement efforts - CERT created the RMM CAM (capability appraisal method) based on the SCAMPI appraisal method www.cert.org/resilience/rmm.html #### SOFTWARE ASSURANCE FORUM #### BUILDING SECURITY IN | 1 | Governance Knowledge Verification | | Deployment | | | Supplier Management | | | | | | | | | | |------------|---|--|--|---|---|---|--|--|---|--|--|---|---|--|---| | | Strategy | Policy | Training | | Security | | | | Risk-Based | | Vulnerability | | Agreement | Evaluation | Agreement | | | & | & | ************************************** | Threat | Requirement | Secure | Architecture | Code | Security | Penetration | Managemen | Environmen | Requirement | & | Managemen | | | Metrics | Compliance | Guidance | Assessment | s | Design | Analysis | Analysis | Testing | Testing | t t | t Hardening | s | Selection | t | | Proof | Establishes
Security Plan;
communicates | Identifies and monitors relevant | Conducts security | Builds and
maintains list of | Documents,
analyzes, and | Develops list of
preferred
frameworks and
security features; | Reviews design | Develops list of
top bugs and
creates review | Performs edge /
boundary value | Performs
external
penetration
testing on | Identifies point
of contact for
incident | Maintains
operational | Identifies and
prioritizes supplier
dependencies;
identifies, | Establishes,
reviews, and | Formalizes
supplier | | Practices: | and provides
training for the
plan | compliance
drivers | awareness
training regularly | application-
specific attack
models | manages
functional security
requirements | explicitly applies
security
principles to
design | against security
requirements | checklists from
security
requirements | condition
testing in QA
process | production
software with
latest
techniques and
mitigates | response;
creates incident
response team | environment
specification | assesses, and
mitigates risks
associated with
supplier
dependencies | distributes
solicitation
package | relationships and
executes supplier
agreement | | BSIMM | SM1.1 | CP1.1
CP1.2 | T1.1
T3.4 | AM1.1
AM1.4 | SR1.1 | SFD1.1
SFD1.2 | AA1.1 - AA1.3
SFD3.1 | CR1.1 | ST1.1 - ST1.2 | PT1.1-PT1.2 | CMVM2.1 | SE1.1
SE1.2 | SR3.1 | | | | CMMI- | PP SG2 - SG3 | OPF SG1 | OT SG2 | RSKM SG1 - SG2 | ARD SG1, SG3 | ATM SG2 | ATM SG1 | AVER SG3 | AVER SG3 | AVER SG3 | CAR SG1 | CM SG2 - SG3 | RSKM SG2-SG3 | SSAD SG1 | AM SG1 | | ACQ | - | - | - | - | REQMISG1 | AVAL SG2 | AVAL SG1 - SG2 | - | - | CAR SG1 - SG2 | OPD SG1 | - | PP SG1 | - | SSAD SG3 | | OSAMM | SM1B | PC1A | EG1A | TA1A | SR1A | SA1A | DR1B | CR1A | ST2B | ST1B | VMIA | EH1A | - | - | | | | | PC1B | | | SR2B | SAIB | | | | | VM1B | | | | | | PRM | SG 2.1
SG 1.3 | SG 3.1 | SG 1.3 | SG 3.2 | SG 3.1 | SG 3.2 | SG 3.4 | SG 3.4 | SG 3.4 | SG 3.4 | SG 4.3 | SG 4.3 | SG 2.3
SG 3.1 | SG 2.3 | SG 2.3 | | | RTSE:SG2 - SG3 | COMP:SG2 | OTA:SG1-SG2 | RISK:SG1-SG4 | RRD:SG1 - SG3 | RTSE:SG1 - SG2 | - | VAR:SG2 | RTSE:SG3 | RTSE:SG3 | VAR:SG1 | ADM:SG3 | EXD:SG1 - SG2 | EXD:SG3 | EXD:SG3 | | RMM | MON:SG1 | MON:SG1-SG2 | | KIM:SG6 | RRM:SG1 | KIM:SG2, SG6 | - | KIM:SG6 | | | MON:SG1 | KIM:SG5 | RISK:SG3 - SG6 | - | -
- | | | Collects and | Establishes
policies and | Conducts role- | | Documents, | Builds secure
frameworks, | | Uses
automated | Integrates black
box security | Performs | Develops | Monitors | Establishes
enterprise and | | Monitors and | | Practices: | tracks security | procedures for | based advanced | Identifies | analyzes, and | security | Makes design
reviews available | code analysis | testing tools | periodic internal | consistent | baseline | assurance | Evaluates | corrects supplier | | Practices: | plan metrics | compliance with
security plan and | application | potential attacker
profiles | manages non-
functional security | services, and | for projects | tools; requires
code analysis | into QA of | white box pen | incident
response | environment
configuration | requirements for | solicitation
responses | processes and | | | based upon risk | other compliance requirements | security training | | requirements | security design
patterns | | as part of
development | software
releases | testing | process | changes | supplier
agreement | , | performance | | BSIMM | SM1.5
SM2.1 | CP1.3
CP3.2 | T2.1 | AM1.3 | SR1.3 | SFD2.1
SFD2.3 | AA2.1
AA2.3 | CR1.4
CR2.3 | ST2.1 | PT2.1-PT2.3 | CMVM1.1 | SE1.1 | SR2.1, SR2.5 | | | | CMMI- | MA SG1 - SG2 | OPF SG2 - SG3 | OT SG2 | RSKM SG1 - SG2 | ARD SG1, SG3 | ATM SG2 | AVAL SG1 | AVER SG3 | AVER SG3 | AVER SG3 | CAR SG1 | CM SG2 - SG3 | REQMISG1 | SSAD SG2 | AM SG1 | | ACQ | PMC SG1 | 5 532 - 536 | - | - | REQMISG1 | AVAL SG2 | PMC SG1 - SG2 | | | | OPD SG1 | | ARD SG2 | - | REQM SG1 | | OSAMM | SM1B | PC2A | EG2A | TA1B | SR1B | SA2A | DR2A | CR2A | ST1B | ST1A | VM2A | EH2B | SR3A | - | | | | - | - | EG3B | | | SA2B | DR2B | CR2B | | ST1B | - | - | | | | | PRM | SG 1.1 | SG 1.2 | SG 1.3 | SG 3.2 | SG 3.1 | SG 3.2 | SG 3.4 | SG 3.4 | SG 3.4 | SG 3.4 | SG 4.3 | SG 4.3 | SG 3.1 | SG 2.3 | SG 2.3 | | | SG 2.2
MA:SG2 | RTSE:SG2 | OTA:SG3 - SG4 | -
RISK:SG1-SG4 | COMP:SG2 | RTSE:SG3 | - | RTSE:SG3 | RTSE:SG3 | -
RTSE:SG3 | -
VAR:SG1 | ADM:SG3 | EXD:SG3 | EXD:SG3 | SG 3.5
EXD:SG4 | | RMM | MON:SG2 | COMP:SG1 | | KIM:SG6 | RRM:SG1 | HISE:SU3 | - | HISESUS | n13E:3U3 | HISESUS | MON:SG1 | KIM:SG5 | RRD:SG2 - SG3 | EXD:SG3 | RRM:SG1 | | Practices: | Drives budgets
based upon
analysis from
metrics
collections | Measures project
compliance at
specific
checkpoints | Provides security
resources for
coaching t
learning | Builds and
maintains abuse
cases and attack
patterns | Builds repository
of well written
testable and
reusable security
requirements | Requires use of
approved
security
platforms and
architectures | Builds standard
architectural
patterns from
lessons learned | Tailors code
analysis for
application-
specific
concerns | Employs risk-
driven
automated
security and
regression
testing in QA | Performs
extensive
penetration
testing
customized with
organizational | Conducts root
cause analysis
for incidents,
fixes all
occurrences of
bugs | Identifies and
deploys relevant
operations and
protection tools;
performs code
signing | Establishes
supplier
agreement | Negotiates and
selects supplier | Evaluates and
accepts supplier
work products | | | SM1.5 | CP2.3 | T1.3 - T1.4 | AM2.1 | SR1.2 | SFD3.2 | AA3.2 | CR3.1 | process
ST3.1 | knowledge
PT3.1-PT3.2 | CMVM3.1-3.2 | SE2.3 | CP2.4 | | | | BSIMM | - | CP3.3 | T2.4 - T2.5 | AM 2.2 | SR2.3 | | | - | - | - | - | - | CP3.2 | - | | | CMMI- | PMC SG2 | OPP SG1 | OT SG2 | RSKM SG2 | - | CM SG1 | AVAL SG2 | AVER SG3 | AVER SG3 | AVER SG3 | CAR SG1 - SG2 | OID SG1 - SG2 | SSAD SG3 | SSAD SG2 | AM SG1 | | ACQ | SM3A | PC3A | -
EG1B - EG2B | TA2A | SR2A | SA3A | DR3A | CR3A | ST1A | ST1B | VM3A | EH3A | - | | PPQA SG1 | | OSAMM | SM3A
SM3B | PC3A | EGIB - EG2B
EG3A | 1 AZA
- | SHZA
- | SA3A
SA3B | DH3A | CH3A | STIA
ST2A | SIIB
- | VIVI3A | OE3B | - | | | | DD: | SG 3.1 | SG 4.1 | SG 1.3 | SG 3.1 | - | SG 3.2 | SG 3.4 | SG 3.4 | SG 3.4 | SG 3.4 | SG 4.2 | SG 4.3 | SG 2.3 | SG 2.3 | SG 2.3 | | PRM | | • _ | - | | | | - | - | - | | SG 3.5 | - | | | | | RMM | RTSE:SG3.SP1 | RTSE:SG2 | OTA:SG2 | RISK:SG1-SG4 | KIM:SG6 | KIM:SG2 | KIM:SG6 | RTSE:SG2 | RTSE:SG3 | RTSE:SG3 | VAR:SG2 - SG4 | RISK:SG5 | EXD:SG3 | EXD:SG3 | EXD:SG4 | | | MON:SG2 | COMP:SG3 - SG4 | OTA:SG4 | KIM:SG6 | - | | - | RTSE:SG3 | | | MON:SG2 | - | | | RRM:SG1 | SwA Checklist for Software Supply Chain Risk Management - The analysis became a framework depicting the agreement and differences among the models - Provides a valuable reference for those wishing to improve their assurance capabilities - Evolved into a more robust SwA tool - The SwA Checklist serves as a model-agnostic harmonized view of current software assurance guidance. Intended Use - Useful to any organization that is currently or will soon be acquiring or developing software - Organizations can use the SwA Checklist to: - Guide their own development - Evaluate vendor capabilities - The checklist can facilitate an understanding of similar assurance goals and practices among the models - Guide the selection of the most appropriate model components ## BUILDING SECURITY IN Design of the SwA Checklist - Currently implemented as a "hot linked" Microsoft Excel spreadsheet - Provides a cross-reference of goals and practices with side-by-side mappings to several freely available maturity models - Presents a list of consolidated goals and practices as well as additional detail illustrating where the maturity models agree and diverge - The consolidated format simplifies identification of the model components best suited for use # SOFTWARE ASSURANCE FORUM BUILDING SECURITY IN Swa Checklist Design | | Software Assurance Checklist for Software Supply Chain Risk Management | | | | | | | | | | | | | | | |-----------------|--|---|---|---|--|---|---|---|--|--|--|--|---|--|--| | Domains: | mains: Governance | | | Knowledge | | | Verification | | | Deployment | | | Supplier Management | | | | Categorie
s: | Strategy
&
Metrics | Policy
&
Compliance | Training
&
Guidance | Threat
Assessment | Security
Requirements | Secure Design | Architecture
Analysis | Code Analysis | Risk-Based
Security
Testing | Penetration
Testing | Yulnerability
Management | Environment
Hardening | Agreement
Requirements | Evaluation
&
Selection | Agreement
Management | | Goals: | Establishes and
executes plan for
ensuring software is
secured throughout
the supply chain | Enforces and tracks
compliance with
security plan
policies and other
compliance
requirements | Fosters training and
awareness programs
to ensure staff can
properly maintain a
secure software
supply chain | Performs threat
modeling and
maintains
knowledgebase of
threats to secure
software supply
chain | Develops and
enforces security
requirements that
will ensure a secure
software supply
chain | Builds security into
the software design | Reviews software
designs to ensure
they meet the
documented
assurance
requirements | Analyzes code to
mitigate bugs
before advancing to
production | Performs automated
testing as part of
QA process to
identify flaws | Conducts penetration testing to test software from a hacker's perspective | Establishes robust
processes to
identify, prioritize,
and fix software
vulnerabilities | Protects, monitors,
and manages the
software
environment | Manages supplier
risk and documents
supplier security
requirements | Reviews and selects
supplier(s)
demonstrating
sufficient risk
management controls
and processes to
meet security
requirements | Enforces, monitors,
manages, and
analyzes supplier
performance against
documented
supplier security
requirements | | Practices: | Ertablisher Security
Plan: communicates
and erovides training
for the plan | ldentifier and muniture
relevant sumeliance
drivere | Conductr recurity
augrener training
regularly | Builde and maintaine
liet of application:
recoific attack modele | Dusumentr, analyzer,
and manager
functional resurity
requirements | Develor list of
preferred frameworks
and security features:
explicitly applies
recurity principles to
design | Revieur derian agginet
resurity requirements | Develoer list of too
buar and creater
review checklists from
recurity requirements | Performs edge f
boundary value
sondition testing in QA
prosess | Perform external senetration tertina on eroduction roftware uith latert techniques and mitigator defects | Identifier egint of
contact for incident
reregnre: creater
incident reregnre team | Maintains accrational
environment
secsification | Identifier and eripritizer rupelier dependensier: identifier, arrerrer, and mitigater rirkr arresiated with | Ertablisher, revieus,
and distributes
sulicitation package | Formalizer rupelier relationshier and executer rupelier agreements | | Statur: | | | | | | | | | | | | | | | | | Practices: | Collectrandtrackr
Security Plan metrics
based upon risk | Ertablisher collisies and eruseduses für sumelianse with security plan and uther sumelianse reauirements | Candustriale-bared
advanced application
resurity training | Identifier patential
attacker profiler | Documents, analyzes,
and manages non-
functional recurity
requirements | Buildrzesure
frameworkr.zesurity
zervisor, andzesurity
dezian patternz | Maker derian revieur
available for projectr | Urer automated code
analyzir took: requirer
code analyzir ar eart of
development process | Integrater black bux
recurity terting tools
into QA of roftware
releases | Performs periodic
internal white box pen
tertina | Develoer consistent
insident resource
process | Muniturr bareline
environment
configuration changer | Ertablisher entererise
and assurance
requirements for
supplier agreements | Evaluater relicitation
reregneer | Munitury and curresty
gupolicy prosegger and
performance | | Statur: | , and the second | | | , and the second | | | | | | | | | | | | | Practices: | Driver budgetr bared
upon analyzir from
metrics collections | Megrurer project
compliance atroccific
checkpointr | Providenze surity,
remurser for coaching
Elearning | Buildr and maintainr
abure carer and attack
eatternr | Buildr knowledgebare
of well-written
rewrable, tertable
recurity requirements | Requirer use of approved recurity platforms and architecturer | Buildertandard
architectural eatterne
from lerrone learned | Tailorz code analyziz
for application:
receific concerns | Emeloveriek-driven
automatedzecurity
and regrezzion tertina
in QA eroscez | Perform extensive
penetration testina
curtomized with
pragnizational
knowledge | Conductront coure
analyzir for incidents,
fixer all occurrences of
buar | Identifier and declary
relevant accrations
and cratection tools;
cerforms codesianing | Ertablisherzusolier
ggreements | Neantiater and relectr
rupplier | Evaluator and account
zupolier work orndustr | | Statur: | | | | | | | | | I | l | l | I | | | | - All fields are hyperlinked to specifically related areas in other tabs in the spreadsheet - This linking allows the user to read how different models address similar assurance goals and practices # BUILDING SECURITY IN Design of the SwA Checklist - The SwA Checklist has five domains: - Governance - Knowledge - Verification - Deployment - Supplier Management - There are three categories under each domain, each having their own goal statement. | Domains: | Governance | | | | | | | | | |-------------|--|---|--|--|--|--|--|--|--| | Categories: | Strategy
&
Metrics | Policy
&
Compliance | Training
&
Guidance | | | | | | | | Goals: | Establishes and executes plan for ensuring software is secured throughout the supply chain | Enforces and tracks
compliance with
security plan
policies and other
compliance
requirements | Fosters training and
awareness
programs to ensure
staff can properly
maintain a secure
software supply
chain | | | | | | | | Practices: | Establishes Security Plan; communicates and provides training for the plan | ldentifies and monitors
relevant compliance
drivers | Conducts security
awareness training
regularly | | | | | | | | Status: | | | | | | | | | | Each goal contains three practices. Establishing a Baseline - Organizations can establish an assurance baseline using the SwA Checklist - Learn more about current software assurance best practices - Become increasingly familiar with the referenced maturity models - Select model components most applicable to specific needs or use the mappings as added value for the maturity model already in use Establishing a Baseline There is a "Status" cell under each practice in which to select an implementation status. The aggregation of the status of each practice helps organizations understand their ability to execute on software assurance activities. # BUILDING SECURITY IN Implementation Status - Implementation status options vary based upon: - The degree to which the practice is implemented (i.e., not started, partially implemented, or fully implemented) and - The party responsible for each practice (i.e., internally, by the supplier, or by both). - Two other responses include "Unknown" and "Not Applicable." - Follow up on these statuses - Unknown = increased risk - "Not Applicable" responses require justification - Thoroughly investigate the status of each practice - Users may discover: - Certain practices actually are applicable or - Practices are already being performed as part of other related practices ### Baseline Summary - After establishing a baseline, a summary displays at the bottom - This system provides an easy-to-view dashboard for an organization's overall implementation of assurance practices | Summary: | | |----------------------------|----| | Not Applicable: | 0 | | Unknown or
Not Started: | 9 | | Partially
Implemented: | 19 | | Fully
Implemented: | 17 | # Baseline Challenges - "Stop light" colors can be misleading - Do not focus solely on the "reds" and "yellows" - "Green" does not necessarily satisfy the organization's assurance goals or adequately mitigate risks - A practice in green is one that is being performed, not necessarily one that is required - Analyze the entire checklist to determine if the correct entity performs each practice correctly and to a sufficient extent, and if each practice is actually mitigating risks according to the organization's assurance goals # Baseline Challenges - Practices marked as "Fully Implemented" do not necessarily represent resources that are well allocated - Select components from the source models to improve the implementation of practices specifically required to meet assurance goals, then ensure their satisfactory completion - Measure not only the assurance activities, but also software lifecycle artifacts (e.g., code) to ensure both are improving - Determine the model components that help accomplish a coherent and cohesive set of activities that meet organizational goals based upon business objectives and risk appetite # SOFTWARE ASSURANCE FORUM BUILDING SECURITY IN Swa Checklist Benefits - Establishes an assurance baseline - Facilitates understanding and selection of maturity models and model components - Increases understanding of overall supply chain assurance and implementation of practices - Enables more productive dialogue among all supply chain parties - Fosters better understanding of where risk is introduced during acquisition or development of software - Baseline provides an organized framework from which to discuss resource needs with senior leadership for assurance initiatives #### **Plans** - The SwA Checklist will be available on the DHS SwA Community Resources and Information Clearinghouse website. - The SwA Forum Processes & Practices Working Group plans to add mappings to additional models and update the SwA Checklist as newer versions of mapped models are released. - CrossTalk journal article **Contacts** Ed Wotring Information Security Solutions, LLC ed.wotring@informationsecuritysolutionsllc.com Sammy Migues Cigital, Inc smigues@cigital.com