
Draft version January 30, 2013
Preprint typeset using LATEX style emulateapj v. 11/10/09

NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS:
COSMOLOGICAL PARAMETER RESULTS

G. Hinshaw1, D. Larson2, E. Komatsu3,4,5, D. N. Spergel6,4, C. L. Bennett2, J. Dunkley7, M. R. Nolta8, M.
Halpern1, R. S. Hill9, N. Odegard9, L. Page10, K. M. Smith6,11, J. L. Weiland2, B. Gold12, N. Jarosik10, A.

Kogut13, M. Limon14, S. S. Meyer15, G. S. Tucker16, E. Wollack13, E. L. Wright17

Draft version January 30, 2013

ABSTRACT
We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunc-

tion with a number of additional cosmological data sets. The WMAP data alone, and in combination,
continue to be remarkably well fit by a six-parameter ΛCDM model. When WMAP data are combined
with measurements of the high-l cosmic microwave background (CMB) anisotropy, the baryon acous-
tic oscillation (BAO) scale, and the Hubble constant, the matter and energy densities, Ωbh

2, Ωch
2,

and ΩΛ, are each determined to a precision of ∼1.5%. The amplitude of the primordial spectrum is
measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5σ level,
confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP
mission, the nine-year data decrease the allowable volume of the six-dimensional ΛCDM parameter
space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data
combinations and show that their ΛCDM parameter fits are consistent. New limits on deviations from
the six-parameter model are presented, for example: the fractional contribution of tensor modes is
limited to r < 0.13 (95% CL); the spatial curvature parameter is limited to Ωk = −0.0027+0.0039

−0.0038; the
summed mass of neutrinos is limited to

∑
mν < 0.44 eV (95% CL); and the number of relativistic

species is found to lie within Neff = 3.84± 0.40, when the full data are analyzed. The joint constraint
on Neff and the primordial helium abundance, YHe, agrees with the prediction of standard Big Bang
nucleosynthesis. We compare recent Planck measurements of the Sunyaev–Zel’dovich effect with our
seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern
around temperature extrema is updated. This confirms a fundamental prediction of the standard
cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial
conditions in the early universe.
Subject headings: cosmic microwave background, cosmology: observations, early universe, dark matter,

space vehicles, space vehicles: instruments, instrumentation: detectors, telescopes

1. INTRODUCTION

Measurements of temperature and polarization anisotropy in the cosmic microwave background (CMB) have played
a major role in establishing and sharpening the standard “ΛCDM” model of cosmology: a six-parameter model based
on a flat universe, dominated by a cosmological constant, Λ, and cold-dark-matter (CDM), with initial Gaussian,
adiabatic fluctuations seeded by inflation. This model continues to describe all existing CMB data, including the
Wilkinson Microwave Anisotropy Probe (WMAP) nine-year data presented in this paper and its companion paper
(Bennett et al. 2012), the small-scale temperature data (Das et al. 2011; Keisler et al. 2011; Reichardt et al. 2012a;
Story et al. 2012), and the small-scale polarization data (Brown et al. 2009; Chiang et al. 2010; QUIET Collaboration
2011, 2012).
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Despite its notable success at describing all current cosmological data sets, the standard model raises many questions:
what is the nature of dark matter and dark energy? What is the physics of inflation? Further, there are open questions
about more immediate physical parameters: are there relativistic species present at the decoupling epoch, beyond the
known photons and neutrinos? What is the mass of the neutrinos? Is the primordial helium abundance consistent
with Big Bang nucleosynthesis? Are the initial fluctuations adiabatic? Tightening the limits on these parameters is
as important as measuring the standard ones. Over the past decade WMAP has provided a wealth of cosmological
information which can be used to address the above questions. In this paper, we present the final, nine-year constraints
on cosmological parameters from WMAP.

The paper is organized as follows. In Section 2, we briefly describe the nine-year WMAP likelihood code, the external
data sets used to complement WMAP data, and we update our parameter estimation methodology. Section 3 presents
nine-year constraints on the minimal six-parameter ΛCDM model. Section 4 presents constraints on parameters beyond
the standard model, such as the tensor-to-scalar ratio, the running spectral index, the amplitude of isocurvature modes,
the number of relativistic species, the mass of neutrinos, spatial curvature, the equation-of-state parameters of dark
energy, and cosmological birefringence. In Section 5, we discuss constraints on the amplitude of matter fluctuations,
σ8, derived from other astrophysical data sets. Section 6 compares WMAP’s seven-year measurements of the Sunyaev–
Zel’dovich effect with recent measurements by Planck. In Section 7, we update our analysis of polarization patterns
around temperature extrema, and we conclude in Section 8.

2. METHODOLOGY UPDATE

Before discussing cosmological parameter fits in the remainder of the paper, we summarize changes in our parameter
estimation methodology and our choice of input data sets. In §2.1 we review changes to the WMAP likelihood code.
In §2.2 we discuss our choice of external data sets used to complement WMAP data in various tests. Most of these
data sets are new since the seven-year data release. We conclude with some updates on our implementation of Markov
Chains.

2.1. WMAP Likelihood Code
For the most part, the structure of the likelihood code remains as it was in the seven-year WMAP data release.

However, instead of using the Monte Carlo Apodised Spherical Transform EstimatoR (MASTER) estimate (Hivon
et al. 2002) for the l > 32 TT spectrum, we now use an optimally-estimated power spectrum and errors based on the
quadratic estimator from Tegmark (1997), as discussed in detail in Bennett et al. (2012). This l > 32 TT spectrum
is based on the template-cleaned V- and W-band data, and the KQ85y9 sky mask (see Bennett et al. (2012) for an
update on the analysis masks). The likelihood function for l > 32 continues to use the Gaussian plus log-normal
approximation described in Bond et al. (1998) and Verde et al. (2003).

The l ≤ 32 TT spectrum uses the Blackwell-Rao estimator, as before. This is based on Gibbs samples obtained from
a nine-year one-region bias-corrected ILC map described in (Bennett et al. 2012) and sampled outside the KQ85y9
sky mask. The map and mask were degraded to HEALPix r518, and 2 µK of random noise was added to each pixel in
the map.

The form of the polarization likelihood is unchanged. The l > 23 TE spectrum is based on a MASTER estimate
and uses the template-cleaned Q-, V-, and W-band maps, evaluated outside the KQ85y9 temperature and polarization
masks. The l ≤ 23 TE, EE, and BB likelihood retains the pixel-space form described in Appendix D of Page et al.
(2007). The inputs are template-cleaned Ka-, Q-, and V-band maps and the HEALPix r3 polarization mask used
previously.

As previously, the likelihood code accounts for several important effects: mode coupling due to sky masking and
non-uniform pixel weighting (due to non-uniform noise); beam window function uncertainty, which is correlated across
the entire spectrum; and residual point source subtraction uncertainty, which is also highly correlated. The treatment
of these effects is described in Verde et al. (2003); Nolta et al. (2009); Dunkley et al. (2009).

2.2. External Data Sets
2.2.1. Small-scale CMB measurements

Since the time when the seven-year WMAP analyses were published, there have been new measurements of small-
scale CMB fluctuations by the Atacama Cosmology Telescope (ACT) (Fowler et al. 2010; Das et al. 2011) and the
South Pole Telescope (SPT) (Keisler et al. 2011; Reichardt et al. 2012a). They have reported the angular power
spectrum at 148 and 217 GHz for ACT, and at 95, 150, and 220 GHz for SPT, to 1′ resolution, over ∼1000 deg2

of sky. At least seven acoustic peaks are observed in the angular power spectrum, and the results are in remarkable
agreement with the model predicted by the WMAP seven-year data (Keisler et al. 2011).

Figure 1 shows data from ACT and SPT at 150 GHz, which constitutes the extended CMB data set used extensively
in this paper (subsequently denoted ‘eCMB’). We incorporate the SPT data from Keisler et al. (2011), using 47 band-
powers in the range 600 < l < 3000. The likelihood is assumed to be Gaussian, and we use the published band-power
window functions and covariance matrix, the latter of which accounts for noise, beam, and calibration uncertainty.
As discussed in §2.3, we account for residual extragalactic foregrounds by marginalizing over three parameters: the

18 The map resolution levels refer to the HEALPix pixelization scheme (Gorski et al. 2005) where r4, r5, r9, and r10 refer to Nside values
of 16, 32, 512, and 1024, respectively.
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Poisson and clustered point source amplitudes, and the SZ amplitude (Keisler et al. 2011). For ACT we use the
148 GHz power spectrum from Das et al. (2011) in the multipole range 500 < l < 10000, marginalizing over the same
clustered point source and SZ amplitudes as in the SPT likelihood, but over a separate Poisson source amplitude.

In addition to the temperature spectra, both ACT and SPT have estimated the deflection spectra due to gravitational
lensing (Das et al. 2011; van Engelen et al. 2012). These measurements are consistent with predictions of the ΛCDM
model fit to WMAP. When we incorporate SPT and ACT data in the nine-year analysis, we also include the lensing
likelihoods provided by each group19 to further constrain parameter fits.

New observations of the CMB polarization power spectra have also been released by the QUIET experiment (QUIET
Collaboration 2011, 2012); their TE and EE polarization spectra are in excellent agreement with predictions based
primarily on WMAP temperature fluctuation measurements. These data are the most recent in a series of polarization
measurements at l & 50. However, high-l polarization observations do not (yet) substantially enhance the power of
the full data to constrain parameters, so we do not include them in the nine-year analysis.

Fig. 1.— A compilation of the CMB data used in the nine-year WMAP analysis. The WMAP data are shown in black, the extended
CMB data set – denoted ‘eCMB’ throughout – includes SPT data in blue (Keisler et al. 2011), and ACT data in orange, (Das et al. 2011).
We also incorporate constraints from CMB lensing published by the SPT and ACT groups (not shown). The ΛCDM model fit to the
WMAP data alone (shown in grey) successfully predicts the higher-resolution data.

2.2.2. Baryon Acoustic Oscillations

The acoustic peak in the galaxy correlation function has now been detected over a range of redshifts from z = 0.1
to z = 0.7. This linear feature in the galaxy data provides a standard ruler with which to measure the distance ratio,
DV /rs, the distance to objects at redshift z in units of the sound horizon at recombination, independent of the local
Hubble constant. In particular, the observed angular and radial BAO scales at redshift z provide a geometric estimate
of the effective distance,

DV (z) ≡ [(1 + z)2 D2
A(z) cz /H(z)]1/3, (1)

where DA(z) is the angular diameter distance and H(z) is the Hubble parameter. The measured ratio DV /rs, where
rs is the co-moving sound horizon scale at recombination, can be compared to theoretical predictions.

19 these codes are available at http://lambda.gsfc.nasa.gov
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TABLE 1
BAO Data Used in the Nine-year Analysis

Redshift Data Set rs/DV (z) Ref.

0.1 6dFGRS 0.336± 0.015 Beutler et al. (2011)

0.35 SDSS-DR7-rec 0.113± 0.002a Padmanabhan et al. (2012)
0.57 SDSS-DR9-rec 0.073± 0.001a Anderson et al. (2012)

0.44 WiggleZ 0.0916± 0.0071 Blake et al. (2012)
0.60 WiggleZ 0.0726± 0.0034 Blake et al. (2012)
0.73 WiggleZ 0.0592± 0.0032 Blake et al. (2012)

a For uniformity, the SDSS values given here have been inverted from the
published values: DV (0.35)/rs = 8.88±0.17, and DV (0.57)/rs = 13.67±0.22.

Since the release of the seven-year WMAP data, the acoustic scale has been more precisely measured by the Sloan
Digital Sky Survey (SDSS) and SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) galaxy surveys, and by
the WiggleZ and 6dFGS surveys. Previously, over half a million galaxies and LRGs from the SDSS-DR7 catalog had
been combined with galaxies from 2dFGRS by Percival et al. (2010) to measure the acoustic scale at z = 0.2 and
z = 0.35. (These data were used in the WMAP seven-year analysis.) Using the reconstruction method of Eisenstein
et al. (2007), an improved estimate of the acoustic scale in the SDSS-DR7 data was made by Padmanabhan et al.
(2012), giving DV (0.35)/rs = 8.88± 0.17, and reducing the uncertainty from 3.5% to 1.9%. More recently the SDSS-
DR9 data from the BOSS survey has been used to estimate the BAO scale of the CMASS sample. They report
DV (0.57)/rs = 13.67± 0.22 for galaxies in the range 0.43 < z < 0.7 (at an effective redshift z = 0.57) (Anderson et al.
2012). This result is used to constrain cosmological models in Sánchez et al. (2012).

The acoustic scale has also been measured at higher redshift using the WiggleZ galaxy survey. Blake et al. (2012)
report distances in three correlated redshift bins between 0.44 and 0.73. At lower redshift, z = 0.1, a detection of
the BAO scale has been made using the 6dFGS survey (Beutler et al. 2011). These measurements are summarized in
Table 1, and plotted as a function of redshift in Figure 19 of Anderson et al. (2012), together with the best-fit ΛCDM
model prediction from the WMAP seven-year analysis (Komatsu et al. 2011). The BAO data are consistent with the
CMB-based prediction over the measured redshift range.

For the nine-year analysis, we incorporate these data into a likelihood of the form

−2 ln L = (x− d)T C−1(x− d), (2)

where

x− d=[rs/DV (0.1)− 0.336, DV (0.35)/rs − 8.88, DV (0.57)/rs − 13.67,

rs/DV (0.44)− 0.0916, rs/DV (0.60)− 0.0726, rs/DV (0.73)− 0.0592] (3)

and

C−1 =


4444.4 0 0 0 0 0

0 34.602 0 0 0 0
0 0 20.661157 0 0 0
0 0 0 24532.1 −25137.7 12099.1
0 0 0 −25137.7 134598.4 −64783.9
0 0 0 12099.1 −64783.9 128837.6

 . (4)

The model distances are derived from the ΛCDM parameters using the same scheme we used in the WMAP seven-year
analysis (Komatsu et al. 2011).

2.2.3. Hubble Parameter

It is instructive to combine WMAP measurements with measurements of the current expansion rate of the universe.
Recent advances in the determination of the Hubble constant have been made since the two teams using HST/WFPC2
observations reported their results (Freedman et al. 2001; Sandage et al. 2006). Re-anchoring the HST Key Project
distance ladder technique, Freedman et al. (2012) report a significantly improved result of H0 = 74.3±1.5 (statistical)
±2.1 (systematic) km sec−1 Mpc−1. The overall 3.5% uncertainty must be taken with some caution however, since
the uncertainties in all rungs are not fully propagated.

In a parallel approach, Riess et al. (2009) redesigned the distance ladder and its observations to control the systematic
errors that dominated the measurements. These steps include: the elimination of zero-point uncertainties by use of
the same photometric system across the ladder; observations of Cepheids in the near-infrared to reduce extinction
and sensitivity to differences in chemical abundance (the so-called “metallicity effect”); the use of geometric distance
measurements to provide a reliable absolute calibration; and the replacement of old Type Ia supernovae observations
with recent ones that use the same photometric systems that define the Hubble flow. This approach has led to a
measurement of H0 = 73.8 ± 2.4 km sec−1 Mpc−1 (Riess et al. 2011) with a total uncertainty of 3.3%. Since this
uncertainty is smaller and has more fully propagated uncertainties, we adopt it in our analysis.
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2.2.4. Type Ia Supernovae

The first direct evidence for acceleration in the expansion of the universe came from measurements of luminosity
distance as a function of redshift using Type Ia supernovae as standard candles (Riess et al. 1998; Schmidt et al. 1998;
Perlmutter et al. 1999). Numerous follow-up observations have been made, extending these early measurements to
higher redshift. After the seven-year WMAP analysis was published, the Supernova Legacy Survey analyzed their
three-year sample (‘SNLS3’) of high redshift supernovae (Guy et al. 2010; Conley et al. 2011; Sullivan et al. 2011). They
measured 242 Type Ia supernovae in the redshift range 0.08 < z < 1.06, three times more than their first-year sample
(Astier et al. 2006). The SNLS team combined the 242 SNLS3 supernovae with 123 SNe at low redshift (Hamuy et al.
1996; Riess et al. 1999; Jha et al. 2006; Hicken et al. 2009; Contreras et al. 2010), 93 SNe from the SDSS supernovae
search (Holtzman et al. 2008), and 14 SNe at z > 1 from HST measurements by Riess et al. (2007) to form a sample
of 472 SNe. All of these supernovae were re-analyzed using both the SALT2 and SiFTO light curve fitters, which give
an estimate of the SN peak rest-frame B-band apparent magnitude at the epoch of maximum light in that filter.

Sullivan et al. (2011) carry out a cosmological analysis of this combined data, accounting for systematic uncertainties
including common photometric zero-point errors and selection effects. They adopt a likelihood of the form

−2 ln L = (mB −mth
B )T C−1(mB −mth

B ), (5)

where mB is the peak-light apparent magnitude in B-band for each supernova, mth
B is the corresponding magnitude

predicted by the model, and C is the covariance matrix of the data. Their analysis assigns three terms to the covariance
matrix, C = Dstat+Cstat+Csys, where Dstat contains the independent (diagonal) statistical errors for each supernova,
Cstat includes the statistical errors that are correlated by the light-curve fitting, and Csys has eight terms to track
systematic uncertainties, including calibration errors, Milky Way extinction, and redshift evolution. The theoretical
magnitude for each supernova is modeled as

mth
B = 5 log[dL(z)/Mpc]− α(s− 1) + βC +M, (6)

where M the empirical intercept of the mth
B − z relation. The parameters α and β quantify the stretch-luminosity and

color-luminosity relationships, and the statistical error, Cstat, is coupled to both parameters. Assuming a constant w
model, Sullivan et al. (2011) measure α = 1.37 ± 0.09, and β = 3.2 ± 0.1. Including the term Csys has a significant
effect: it increases the error on the dark energy equation of state, σw from 0.05 to 0.08 in a flat universe.

The 472 Type Ia supernovae used in the SNLS3 analysis are consistent with the ΛCDM model predicted by WMAP
(Sullivan et al. 2011), thus we can justify including these data in the present analysis. However, the extensive study
presented by the SNLS team shows that a significant level of systematic error still exists in current supernova observa-
tions. Hence we restrict our use of supernova data in this paper to the subset of models that examine the dark energy
equation of state. When SNe data are included, we marginalize over the three parameters α, β, and M . α and β are
sampled in the Markov Chain Monte Carlo (MCMC) chains, while M is marginalized analytically (Lewis & Bridle
2002).

2.3. Markov Chain Methodology
As with previous WMAP analyses, we use MCMC methods to evaluate the likelihood of cosmological parameters.

Aside from incorporating new likelihood codes for the external data sets described above, the main methodological
update for the nine-year analysis centers on how we marginalize over SZ and point source amplitudes when analyzing
multiple CMB data sets (i.e., “WMAP+eCMB”). We have also incorporated updates to the Code for Anisotropies in
the Microwave Background (CAMB, Lewis et al. 2000), as described in §2.3.1.

SZ amplitude - When combining data from multiple CMB experiments (WMAP, ACT, SPT) we sample and
marginalize over a single SZ amplitude, ASZ, that parameterizes the SZ contribution to all three data sets. To do so,
we adopt a common SZ power spectrum template, and scale it to each experiment as follows. Battaglia et al. (2012b)
compute a nominal SZ power spectrum at 150 GHz for the SPT experiment (their Figure 5, left panel, blue curve). We
adopt this curve as a spectral template and scale it by a factor of 1.05 and 3.6 to describe the relative SZ contribution
at 148 GHz (for ACT) and 61 GHz (for WMAP), respectively. The nuisance parameter ASZ then multiplies all three
SZ spectra simultaneously.

The above frequency scaling assumes a thermal SZ spectrum. For WMAP we assume an effective frequency of 61
GHz, even though the WMAP power spectrum includes 94 GHz data. We ignore this error because WMAP data
provide negligible constraints on the SZ amplitude when analyzed on their own. In the SPT and ACT frequency range,
the thermal SZ spectrum is very similar to the kinetic SZ spectrum, so our procedure effectively accounts for that
contribution as well.

Clustered point sources - We adopt a common parameterization for the clustered point source contribution to
both the ACT and SPT data, namely l(l + 1)Cl/2π = Acps l0.8 (Addison et al. 2012). Both the ACT and SPT teams
use this form in their separate analyses at high l. (At low l, the SPT group adopts a constant spectrum, but this
makes a negligible difference to our analysis.) By using a common amplitude for both experiments, we introduce one
additional nuisance parameter.

Poisson point sources - For unclustered residual point sources we adopt the standard power spectrum Cl = const.
Since the ACT and SPT groups use different algorithms for identifying and removing bright point sources, we allow the
templates describing the residual power to have different amplitudes for the two experiments. This adds two additional
nuisance parameters to our chains.
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TABLE 2
Maximum Likelihood ΛCDM Parametersa

Parameter Symbol WMAP data Combined datab

Fit ΛCDM parameters

Physical baryon density Ωbh
2 0.02256 0.02240

Physical cold dark matter density Ωch2 0.1142 0.1146
Dark energy density (w = −1) ΩΛ 0.7185 0.7181
Curvature perturbations, k0 = 0.002 Mpc−1 109∆2

R 2.40 2.43
Scalar spectral index ns 0.9710 0.9646
Reionization optical depth τ 0.0851 0.0800

Derived parameters

Age of the universe (Gyr) t0 13.76 13.75
Hubble parameter, H0 = 100h km/s/Mpc H0 69.7 69.7
Density fluctuations @ 8h−1 Mpc σ8 0.820 0.817
Baryon density/critical density Ωb 0.0464 0.0461
Cold dark matter density/critical density Ωc 0.235 0.236
Redshift of matter-radiation equality zeq 3273 3280
Redshift of reionization zreion 10.36 9.97

a The maximum-likelihood ΛCDM parameters for use in simulations. Mean parameter values,
with marginalized uncertainties, are reported in Table 4.
b “Combined data” refers to WMAP+eCMB+BAO+H0.

2.3.1. CAMB

Model power spectra are computed using the Code for Anisotropies in the Microwave Background (CAMB, Lewis
et al. 2000), which is based on the earlier code CMBFAST (Seljak & Zaldarriaga 1996). We use the January 2012
version of CAMB throughout the nine-year analysis except when evaluating the (w0, wa) model, where we adopted the
October 2012 version. We adopt the default version of recfast that is included with CAMB instead of other available
options. As in the seven-year analysis, we fix the reionization width to be ∆z = 0.5. Since the WMAP likelihood
code only incorporates low l BB data (with low sensitivity), we set the accurate BB flag to FALSE and run the code
with CBB

l = 0. We set the high accuracy default flag to TRUE. When calling the ACT and SPT likelihoods, we set
k eta max scalar = 15000 and l max scalar = 6000. The ACT likelihood extends to l = 10000, but foregrounds
dominate beyond l = 6000. Except when exploring neutrino models, we adopt zero massive neutrinos and 3.04 massless
neutrinos. The CMB temperature is set to 2.72548 K (Fixsen 2009).

3. THE SIX-PARAMETER ΛCDM MODEL

In this section we discuss the determination of the standard ΛCDM parameters, first using only the nine-year WMAP
data, then, in turn, combined with the additional data sets discussed in §2.2. Our analysis employs the same Monte
Carlo Markov Chain (MCMC) formalism used in previous analyses (Spergel et al. 2003; Verde et al. 2003; Spergel
et al. 2007; Dunkley et al. 2009; Komatsu et al. 2009; Larson et al. 2011; Komatsu et al. 2011). This formalism
naturally produces parameter likelihoods that are marginalized over all other fit parameters in the model. Throughout
this paper, we quote best-fit values as the mean of the marginalized likelihood, unless otherwise stated (e.g., mode or
upper limits). Lower and upper error limits correspond to the 16% and 84% points in the marginalized cumulative
distribution, unless otherwise stated.

The six parameters of the basic ΛCDM model are: the physical baryon density, Ωbh
2; the physical cold dark matter

density, Ωch
2; the dark energy density, in units of the critical density, ΩΛ; the amplitude of primordial scalar curvature

perturbations, ∆2
R at k = 0.002 Mpc−1; the power-law spectral index of primordial density (scalar) perturbations,

ns; and the reionization optical depth, τ . In this model, the Hubble constant, H0 = 100h km/s/Mpc, is implicitly
determined by the flatness constraint, Ωb + Ωc + ΩΛ = 1. A handful of parameters in this model take assumed values
that we further test in §4; other parameters may be derived from the fit, as in Table 2. Throughout this paper we
assume the initial fluctuations are adiabatic and Gaussian distributed (see Bennett et al. (2012) for limits on non-
Gaussian fluctuations from the nine-year WMAP data) except in §4.2 where we allow the initial fluctuations to include
an isocurvature component.

To assess WMAP data consistency, we begin with a comparison of the nine-year and seven-year results (Komatsu
et al. 2011); we then study the ΛCDM constraints imposed by the nine-year WMAP data, in conjunction with the
most recent external data sets available.

3.1. Comparison With Seven-year Fits
Table 3 gives the best-fit ΛCDM parameters (mean and standard deviation, marginalized over all other parameters)

for selected nine-year and seven-year data combinations. In the case where only WMAP data are used, we evaluate
parameters using both the C−1-weighted spectrum and the MASTER-based one. For the case where we include BAO
and H0 priors, we use only the C−1-weighted spectrum for the nine-year WMAP data, and we update the priors, as
per §2.2. The seven-year results are taken from Table 1 of Komatsu et al. (2011).

3.1.1. WMAP Data Alone
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We first compare seven-year and nine-year results based on the MASTER spectra. Table 3 shows that the nine-
year ΛCDM parameters are all within 0.5σ of each other, with Ωch

2 having the largest difference. We note that the
combination Ωmh2 +ΩΛ is approximately constant between the two models, reflecting the fact that this combination is
well constrained by primary CMB fluctuations, whereas Ωm −ΩΛ is less so due to the geometric degeneracy. Turning
to the C−1-weighted spectrum, we note that the nine-year ΛCDM parameters based on this spectrum are all within
∼ 0.3σ of the seven-year values. Thus we conclude that the nine-year model fits are consistent with the seven-year fit.

Next, we examine the consistency of the two ΛCDM model fits, derived from the two nine-year spectrum estimates.
As seen in Table 3, the six parameters agree reasonably well, but we note that the estimates for ns differ by 0.75σ,
which we discuss below. To help visualize the fits, we plot both spectra (C−1-weighted and MASTER), and both
models in Figure 2. As noted in Bennett et al. (2012), the difference between the two spectrum estimates is most
noticeable in the range l ∼ 30 − 60 where the C−1-weighted spectrum is lower than the MASTER spectrum, by up
to 5% in one bin. However, the ΛCDM model fits only differ noticeably for l . 10 where the fit is relatively weakly
constrained due to cosmic variance.

To understand why these two model spectra are so similar, we examine parameter degeneracies between the six
ΛCDM parameters when fit to the nine-year WMAP data. In Figure 3 we show the two largest degeneracies that
affect the spectral index ns, namely 109∆2

R and Ωbh
2. The contours show the 68% and 95% CL regions for the fits

to the C−1-weighted spectrum while the plus signs show the maximum likelihood points from the MASTER fit. Note
that the C−1-weighted fits favor lower 109∆2

R and higher Ωbh
2, both of which push the C−1-weighted fit towards

higher ns. Given the consistency of the fit model spectra, we conclude that the underlying data are quite robust and
in subsequent subsections, we look to external data to help break any degeneracies that remain in the nine-year data.

We conclude this subsection with a summary of some additional tests with simulations that we carried out to assess
the robustness of the C−1-weighted spectrum estimate in general, and the ns fits in particular. First, we compared
C−1-weighted and MASTER spectra obtained from the 500 “parameter recovery” simulations developed for our seven-
year analysis (Larson et al. 2011). In this test, the C−1-weighted spectrum was shown to be unbiased over the full
multipole range that WMAP is sensitive to.

We next evaluated a number of difference statistics, but the one that was deemed most pertinent to understanding
the ns fit was the average power difference between l = 32 − 64 (this is admittedly a posterior choice of l range).
When the parameter recovery simulations were analyzed with the conservative KQ75y9 mask, more than one-third of
the simulated spectra had a larger power difference (C−1−MASTER, in the l = 32− 64 bin) than did the flight data.
However, when the same analysis was performed with the KQ85y9 mask, only 2 out of 500 simulation realizations had
a larger difference than did the flight data. This led us to investigate residual foreground contamination.

We amended the CMB-only parameter recovery simulations with model foreground signals that we deemed to be
representative of both the raw foreground signal outside the KQ85y9 mask, and an estimate of the residual contamina-
tion after template cleaning. These signals were based on the modeling studies described in Bennett et al. (2012). We
repeated the comparison of the two spectrum estimates with the foreground-contaminated simulations. Both estimates
showed slightly elevated power in the l = 32− 64 bin (a few percent), with the MASTER estimate being slightly more
sensitive to residual foreground power. However, the distribution of spectrum differences was not significantly different
than with the CMB-only simulations. In the end, we attribute the spectrum differences to statistical fluctuations and
we adopt the C−1-weighted spectrum for our final analysis because it has lower uncertainties (Bennett et al. 2012).

To conclude the seven-year/nine-year comparison, we note that the remaining 5 ΛCDM parameters changed by less
than 0.3σ indicating very good consistency. The overall effect of the nine-year WMAP data is to improve the average
parameter uncertainty by about 10%, with Ωch

2 and ΩΛ each improving by nearly 20%. The latter improvement
is a result of higher precision in the third acoustic peak measurement (Bennett et al. 2012) which gives a better
determination of Ωch

2. This, in turn, improves ΩΛ, which is constrained by flatness (or in non-flat models, by the
geometric degeneracy discussed in §4.5). The overall volume reduction in the allowed 6-dimensional ΛCDM parameter
space in the switch from seven-year to nine-year data is a factor of 2, the majority of which derives from switching to
the C−1-weighted spectrum estimate.

3.1.2. WMAP Data With BAO and H0

To complete our comparison with seven-year results, we examine ΛCDM fits that include the BAO and H0 priors.
In Komatsu et al. (2011) we argued that these two priors (then based on earlier data) provided the most robust and
complementary parameter constraints, when used to supplement WMAP data. In Table 3 we give results for the
updated version of this data combination, which includes the nine-year C−1-weighted spectrum for WMAP and the
BAO and H0 priors noted in §2.2.2 and §2.2.3, respectively. For comparison, we reproduce seven-year numbers from
Table 1 of Komatsu et al. (2011).

As a measure of data consistency, we note that 4 of the 6 ΛCDM parameters changed by less than 0.25σ (in units
of the seven-year σ) except for Ωch

2 and ΩΛ which changed by ±0.8σ, respectively. As noted above, these latter
two parameters were more stable when fit to WMAP data alone (both in absolute value and in units of σ), so we
conclude that this small change is primarily driven by the updated BAO and H0 priors. In particular, CMB data
provide relatively weak constraints along the geometric degeneracy line (which corresponds to a line of nearly constant
Ωm + ΩΛ when spatial curvature is allowed), so external data are able to force limited anti-correlated changes in
(Ωm,ΩΛ) with relatively little penalty from the WMAP likelihood. In subsequent sections we explore the nine-year
ΛCDM fits more fully by adding external data sets to the WMAP data one at a time.
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Fig. 2.— Two estimates of the WMAP nine-year power spectrum along with the best-fit model spectra obtained from each; black - the
C−1-weighted spectrum and best fit model; red - the same for the MASTER spectrum and model. The two spectrum estimates differ by
up to 5% in the vicinity of l ∼ 50 which mostly affects the determination of the spectral index, ns, as shown in Table 3. We adopt the
C−1-weighted spectrum throughout the remainder of this paper.

Fig. 3.— 68% and 95% CL regions for the ΛCDM parameters ns, 109∆2
R, and Ωbh

2. There is a modest degeneracy between these
three parameters in the six-parameter ΛCDM model, when fit to the nine-year WMAP data. The contours are derived from fits to the
C−1-weighted power spectrum, while the plus signs indicate the maximum likelihood point for the fit to the MASTER power spectrum.
As shown in Figure 2, the two model produce nearly identical spectra.
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TABLE 3
WMAP Seven-year to Nine-year Comparison of the Six-Parameter ΛCDM Modela

WMAP-onlyb WMAP+BAO+H0
b

Parameter Nine-year Nine-year (MASTER)c Seven-year Nine-year Seven-year

Fit parameters

Ωbh
2 0.02264± 0.00050 0.02243± 0.00055 0.02249+0.00056

−0.00057 0.02266± 0.00043 0.02255± 0.00054

Ωch2 0.1138± 0.0045 0.1147± 0.0051 0.1120± 0.0056 0.1157± 0.0023 0.1126± 0.0036
ΩΛ 0.721± 0.025 0.716± 0.028 0.727+0.030

−0.029 0.712± 0.010 0.725± 0.016

109∆2
R 2.41± 0.10 2.47± 0.11 2.43± 0.11 2.427+0.078

−0.079 2.430± 0.091
ns 0.972± 0.013 0.962± 0.014 0.967± 0.014 0.971± 0.010 0.968± 0.012
τ 0.089± 0.014 0.087± 0.014 0.088± 0.015 0.088± 0.013 0.088± 0.014

Derived parameters

t0 (Gyr) 13.74± 0.11 13.75± 0.12 13.77± 0.13 13.750± 0.085 13.76± 0.11
H0 (km/s/Mpc) 70.0± 2.2 69.7± 2.4 70.4± 2.5 69.33± 0.88 70.2± 1.4
σ8 0.821± 0.023 0.818± 0.026 0.811+0.030

−0.031 0.830± 0.018 0.816± 0.024
Ωb 0.0463± 0.0024 0.0462± 0.0026 0.0455± 0.0028 0.0472± 0.0010 0.0458± 0.0016
Ωc 0.233± 0.023 0.237± 0.026 0.228± 0.027 0.2408+0.0093

−0.0092 0.229± 0.015
zreion 10.6± 1.1 10.5± 1.1 10.6± 1.2 10.5± 1.1 10.6± 1.2

a Comparison of 6-parameter ΛCDM fits with seven-year and nine-year WMAP data, with and without BAO and H0 priors.
b The first three data columns give results from fitting to WMAP data only. The last two columns give results when BAO and H0 priors
are added. As discussed in §2.2, these priors have been updated for the nine-year analysis. The seven-year results are taken directly
from Table 1 of Komatsu et al. (2011).
c Unless otherwise noted, the nine-year WMAP likelihood uses the C−1-weighted power spectrum whereas the seven-year likelihood
used the MASTER-based spectrum. The column labeled ‘Nine-year (MASTER)’ is a special run for comparing to the seven-year results.

The combined effect of the nine-year WMAP data and updated the BAO and H0 priors is to improve the average
parameter uncertainty by nearly 25%, with Ωch

2 and ΩΛ each improving by 37%, due, in part, to improved constraints
along the geometric degeneracy line. The overall volume reduction in the allowed 6-dimensional ΛCDM parameter
space is a factor of 5, nearly half of which (a factor of 2) comes from the nine-year WMAP data alone.

3.2. ΛCDM Constraints From CMB Data
From the standpoint of astrophysics, primary CMB fluctuations, combined with CMB lensing, arguably provide the

cleanest probe of cosmology because the fluctuations dominate Galactic foreground emission over most of the sky,
and they can (so far) be understood in terms of linear perturbation theory and Gaussian statistics. Thus we next
consider parameter constraints that can be obtained when adding additional CMB data to the nine-year WMAP data.
Specifically, we examine the effects of adding SPT and ACT data (see §2.2.1): the best-fit parameters are given in the
“+eCMB” column of Table 4.

With the addition of the high-l CMB data, the constraints on the energy density parameters Ωbh
2, Ωch

2, and ΩΛ

all improve by 25% over the precision from WMAP data alone. The improvement in the baryon density measurement
is due to more precise measurements of the Silk damping tail in the power spectrum at l & 1000; the improvements in
Ωch

2 and ΩΛ are due in part to improvements in the high-l TT data, but also to the detection of CMB lensing in the
SPT and ACT data (Das et al. 2011; van Engelen et al. 2012), which helps to constrain Ωm by fixing the growth rate
of structure between z = 1100 and z = 1− 2 (the peak in the lensing kernel). Taken together, CMB data available at
the end of the WMAP mission produce a 1.6% measurement of Ωbh

2 and a 3.0% measurement of Ωch
2.

The increased k-space lever arm provided by the high-l CMB data improves the uncertainty on the scalar spectral
index by 25%, giving ns = 0.9646± 0.0098, which implies a non-zero tilt in the primordial spectrum (i.e., ns < 1) at
3.6σ. We examine the implications of this measurement for inflation models in §4.1.

If we assume a flat universe, which breaks the CMB’s geometric degeneracy, then CMB data alone now provide a
2.3% measurement of the Hubble parameter, H0 = 70.5± 1.6 km/s/Mpc, independent of the cosmic distance ladder.
As discussed in §3.4, this is consistent with the recent determination of the Hubble parameter using the cosmic distance
ladder: H0 = 73.8± 2.4 km/s/Mpc (Riess et al. 2011); we explore the effect of adding this prior in §3.4. We relax the
assumption of flatness in §4.5.

3.3. Adding BAO Data
Acoustic structure in the large scale distribution of galaxies is manifest on a co-moving scale of 152 Mpc, where the

evolution of matter fluctuations is largely within the linear regime. A number of authors have studied the degree to
which the acoustic structure could be perturbed by nonlinear evolution (e.g., Seo & Eisenstein 2005; Seo & Eisenstein
2007; Jeong & Komatsu 2006, 2009; Crocce & Scoccimarro 2008; Matsubara 2008; Taruya & Hiramatsu 2008; Pad-
manabhan & White 2009), and the effects are well below the current measurement uncertainties. Because it is based
on the same well-understood physics that governs the CMB anisotropy, we consider measurements of the BAO scale
to be the next-most robust cosmological probe after CMB fluctuations. The ΛCDM parameters fit to CMB and BAO
data are given in the “+eCMB+BAO” column of Table 4.

Measurements of the tangential and radial BAO scale at redshift z measure the effective distance DV (z), given
in equation (1), in units of the sound horizon rs(zd). This quantity is primarily sensitive to the total matter and
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TABLE 4
Six-Parameter ΛCDM Fit; WMAP plus External Dataa

Parameter WMAP +eCMB +eCMB+BAO +eCMB+H0 +eCMB+BAO+H0

Fit parameters

Ωbh
2 0.02264± 0.00050 0.02229± 0.00037 0.02211± 0.00034 0.02244± 0.00035 0.02223± 0.00033

Ωch2 0.1138± 0.0045 0.1126± 0.0035 0.1162± 0.0020 0.1106± 0.0030 0.1153± 0.0019
ΩΛ 0.721± 0.025 0.728± 0.019 0.707± 0.010 0.740± 0.015 0.7135+0.0095

−0.0096

109∆2
R 2.41± 0.10 2.430± 0.084 2.484+0.073

−0.072 2.396+0.079
−0.078 2.464± 0.072

ns 0.972± 0.013 0.9646± 0.0098 0.9579+0.0081
−0.0082 0.9690+0.0091

−0.0090 0.9608± 0.0080

τ 0.089± 0.014 0.084± 0.013 0.079+0.011
−0.012 0.087± 0.013 0.081± 0.012

Derived parameters

t0 (Gyr) 13.74± 0.11 13.742± 0.077 13.800± 0.061 13.702± 0.069 13.772± 0.059
H0 (km/s/Mpc) 70.0± 2.2 70.5± 1.6 68.76± 0.84 71.6± 1.4 69.32± 0.80
σ8 0.821± 0.023 0.810± 0.017 0.822+0.013

−0.014 0.803± 0.016 0.820+0.013
−0.014

Ωb 0.0463± 0.0024 0.0449± 0.0018 0.04678± 0.00098 0.0438± 0.0015 0.04628± 0.00093
Ωc 0.233± 0.023 0.227± 0.017 0.2460± 0.0094 0.216± 0.014 0.2402+0.0088

−0.0087

zeq 3265+106
−105 3230± 81 3312± 48 3184± 70 3293± 47

zreion 10.6± 1.1 10.3± 1.1 10.0± 1.0 10.5± 1.1 10.1± 1.0

a ΛCDM model fit to WMAP nine-year data combined with a progression of external data sets.

dark energy densities, and to the current Hubble parameter. Since the BAO scale is relatively insensitive to the
baryon density, Ωbh

2, this parameter does not improve significantly with the addition of the BAO prior. However, the
low-redshift distance information imposes complementary constraints on the matter density and Hubble parameter,
improving the precision on Ωch

2 from 3.0% to 1.6%, and on H0 from 2.3% to 1.2%. In the context of standard ΛCDM
these improvements lead to a measurement of the age of the universe with 0.4% precision: t0 = 13.800± 0.061 Gyr.

The addition of the BAO prior helps to break some residual degeneracy between the primordial spectral index, ns,
on the one hand, and Ωch

2 and H0 on the other. Figure 4 shows the 2-dimensional parameter likelihoods for (ns,Ωch
2)

and (ns,H0) for the three data combinations considered to this point. With only CMB data (black and blue contours)
there remains a weak degeneracy between ns and the other two. When the BAO prior is added (red), it pushes Ωch

2

towards the upper end of the range allowed by the CMB, and vice versa for H0. Both of these results push ns towards
the lower end of its CMB-allowable range; consequently, with the BAO prior included, the marginalized measurement
of the primordial spectral index is ns = 0.9579+0.0081

−0.0082 which constitutes a 5σ measurement of tilt (ns < 1) in the
primordial spectrum. We discuss the implications of this measurement for inflation models in §4.1.

Fig. 4.— Measurements of the scalar spectral index with CMB and BAO data. Left to right - contours of (DV (0.57)/rs,ns), (H0,ns),
(Ωch2,ns). Black contours show constraints using WMAP nine-year data alone; blue contours include SPT and ACT data (WMAP+eCMB);
red contours add the BAO prior(WMAP+eCMB+BAO). The BAO prior provides an independent measurement of the low-redshift distance,
Dv(z)/rs, which maps to constraints on Ωch2 and H0. When combined with CMB data, the joint constraints require a tilt in the primordial
spectral index (ns< 1) at the 5σ level.

3.4. Adding H0 Data
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Measurements of the Hubble parameter using the cosmic distance ladder have a long history, and are subject to
a variety of different systematic errors that have been steadily reduced over time. However, an accurate, direct
measurement of the current expansion rate is vital for testing the validity of the ΛCDM model because the value
derived from the CMB and BAO data is model-dependent. Measurements of H0 provide an excellent complement to
CMB and BAO measurements. The H0 prior considered here has a precision that approaches the ΛCDM-based value
given above. Consequently, we next consider the addition of the H0 prior discussed in §2.2.3, without the inclusion of
the BAO prior. The ΛCDM parameters fit to CMB and H0 data are given in “+eCMB+H0” column of Table 4.

Two cosmological quantities that significantly shape the observed CMB spectrum are the epoch of matter radiation
equality, zeq, which depends on Ωch

2, and the angular diameter distance to the last scattering surface, dA(z∗), which
depends primarily on H0. As illustrated in Figure 5 (see also §4.3.1), the CMB data still admit a weak degeneracy
between Ωch

2 and H0 that the BAO and H0 priors help to break. The black contours in Figure 5 show the constraints
from CMB data (WMAP+eCMB), the red from CMB and BAO data, and the blue from CMB with the H0 prior.
While these measurements are all consistent, it is interesting to note that the BAO and H0 priors are pushing towards
opposite ends of the range allowed by the CMB data for this pair of parameters. Given this minor tension, it is worth
examining independent sets of constraints that do not share common CMB data. A simple test is to compare the
marginalized constraints on the Hubble parameter from the CMB+BAO data (H0 = 68.76± 0.84 km/s/Mpc), to the
direct, and independent, measurement from the distance ladder (H0 = 73.8 ± 2.4 km/s/Mpc). In our Markov Chain
that samples the ΛCDM model with the WMAP+eCMB+BAO data, we found that only 0.1% of the H0 values in
the chain fell within the 1σ range of the Hubble prior, but that 45% fell within the 2σ range of 73.8± 4.8 km/s/Mpc.
Based on this, we conclude that these measurements do not disagree, and that they may be combined to form more
stringent constraints on the ΛCDM parameters.

We conclude this subsection by noting that measurements of the remaining ΛCDM parameters are modestly improved
by the addition of the H0 prior to the CMB data, with Ωch

2 improving the most due to the effect discussed above and
illustrated in Figure 5.

Fig. 5.— Measurements of Ωch2 and H0 from CMB data only (blue contours, WMAP+eCMB), from CMB and BAO data (green
contours, WMAP+eCMB+BAO), and from CMB and H0 data (red contours, WMAP+eCMB+H0). The two non-CMB priors push the
constraints towards opposite ends of the range allowed by the CMB alone, but they are not inconsistent.

3.5. ΛCDM Fits to the Combined Data
Given the consistency of the data sets considered above, we conclude with a summary of the ΛCDM fits derived

from the union of these data. The marginalized results are given in the “+eCMB+BAO+H0” column of Table 4.
The matter and energy densities, Ωbh

2, Ωch
2, and ΩΛ are all now determined to ∼1.5% precision with the current

data. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for tilt in the
primordial spectrum at the 5σ level.

At the end of the WMAP mission, the nine-year data produced a factor of 68,000 decease in the allowable volume
of the six-dimensional ΛCDM parameter space, relative to the pre-WMAP measurements. When these data are
combined with the eCMB+BAO+H0 priors, we obtain an additional factor of 27 over the WMAP-only constraints.
As an illustration of the predictive power of the current data, Figure 6 shows the 1σ range of high-l power spectra
allowed by the six-parameter fits to the nine-year WMAP data. As shown in Figure 1, this model has already predicted
the current small-scale measurements. If future measurements of the spectrum, for example by Planck, lie outside this
range, then either there is a problem with the six-parameter model, or a problem with the data.
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Fig. 6.— The nine-year WMAP data (in black) are shown with the 1σ locus of six-parameter ΛCDM models allowed by the nine-year
WMAP data. The error band is derived from the Markov Chain of six-parameter model fits to the WMAP data alone. The blue curve
indicates the mean of the ΛCDM model fit to the WMAP+eCMB data combination. At high-l this curve sits about 1σ below the model
fit to WMAP data alone. The marginalized parameter constraints that define these models are given in the WMAP and WMAP+eCMB
columns of Table 4.

Remarkably, despite this dramatic increase in precision, the six-parameter ΛCDM model still produces an acceptable
fit to all of the available data. Bennett et al. (2012) present a detailed breakdown of the goodness of fit to the nine-year
WMAP data. In the next section we place limits on parameters beyond the six required to describe our universe.

4. BEYOND SIX-PARAMETER ΛCDM

In this section we discuss constraints that can be placed on cosmological parameters beyond the standard model
using the nine-year WMAP data combined with the external data sets discussed in §2.2. In the following subsections,
we consider limits that can be placed on additional parameters one or two at a time, beginning with constraints on
initial conditions and proceeding through to the late-time effects of dark energy.

4.1. Primordial Spectrum and Gravitational Waves
As noted in §3.5, the nine-year WMAP data, when combined with eCMB, BAO and H0 priors, exclude a scale-

invariant primordial power spectrum at 5σ significance. For a power-law spectrum of primordial curvature perturba-
tions,

∆2
R(k) = ∆2

R(k0)
(

k

k0

)ns−1

, (7)

with k0 = 0.002 Mpc−1, we find ns = 0.9608 ± 0.0080. This result assumes that tensor modes (gravitational waves)
contribute insignificantly to the CMB anisotropy.

At this time, the most sensitive limits on tensor modes are still obtained from the shape of the temperature power
spectrum, in conjunction with additional data. For example, Story et al. (2012) report r < 0.18 (95% CL), where

r ≡ ∆2
h(k0)

∆2
R(k0)

=
Ph(k0)
PR(k0)

. (8)
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Due to confusion from density fluctuations, the lowest tensor amplitude that can be reliably detected from temperature
data is r . 0.13 (Knox 1995). Several recent experiments are beginning to establish comparable limits from non-
detection of B-mode polarization anisotropy, e.g., Chiang et al. (2010) report r < 0.7 (95% CL) from BICEP and
the QUIET Collaboration (2012) reports r < 2.8 (95% CL). A host of forthcoming experiments are targeting B-mode
measurements that have the potential to detect or limit tensor modes at significantly lower levels than can be achieved
with temperature data alone.

In Table 5, we report limits on r from the nine-year WMAP data, analyzed alone and jointly with external data;
the tightest constraint is

r < 0.13 (95% CL) WMAP+eCMB+BAO+H0.

This is effectively at the limit one can reach without B-mode polarization measurements. The joint constraints on ns

and r are shown in Figure 7, along with selected model predictions derived from single-field inflation models. Taken
together, the current data strongly disfavor a pure Harrison-Zel’dovich (HZ) spectrum, even if tensor modes are allowed
in the model fits.

Fig. 7.— Two-dimensional marginalized constraints (68% and 95% CL) on the primordial tilt, ns, and the tensor-to-scalar ratio, r, derived
with the nine-year WMAP in conjunction with: eCMB (green) and eCMB+BAO+H0 (red). The symbols and lines show predictions from
single-field inflation models whose potential is given by V (φ) ∝ φα (Linde 1983), with α = 4 (solid), α = 2 (long-dashed), and α = 1
(short-dashed; McAllister et al. 2010). Also shown are those from the first inflation model, which is based on an R2 term in the gravitational
Lagrangian (dotted; Starobinsky 1980). Starobinsky’s model gives ns = 1− 2/N and r = 12/N2 where N is the number of e-folds between
the end of inflation and the epoch at which the scale k = 0.002 Mpc−1 left the horizon during inflation. These predictions are the same
as those of inflation models with a ξφ2R term in the gravitational Lagrangian with a λφ4 potential (Komatsu & Futamase 1999). See
Appendix A for details.

4.1.1. Running Spectral Index

Some inflation models predict a scale dependence or “running” in the (nearly) power-law spectrum of scalar pertur-
bations. This is conveniently parameterized by the logarithmic derivative of the spectral index, dns/d ln k, which gives
rise to a spectrum of the form (Kosowsky & Turner 1995)

∆2
R(k) = ∆2

R(k0)
(

k

k0

)ns(k0)−1+ 1
2 ln(k/k0)dns/d ln k

. (9)

We do not detect a statistically significant deviation from a pure power-law spectrum with the nine-year WMAP data.
The allowed range of dns/d ln k is both closer to zero and has a smaller confidence range with the nine-year data,
dns/d ln k = −0.019± 0.025. However, with the inclusion of the high-l CMB data, the full CMB data prefer a slightly
more negative value, with a smaller uncertainty, dns/d ln k = −0.022+0.012

−0.011. While not significant, this result might
indicate a trend as the l-range of the data expand. The inclusion of BAO and H0 data does not affect these results.

If we allow both tensors and running as additional primordial degrees of freedom, the data prefer a slight negative
running, but still at less than 3σ significance, and only with the inclusion of the high-l CMB data. Complete results
are given in Table 5.

4.2. Isocurvature Modes
In addition to adiabatic fluctuations, where all species fluctuate in phase and therefore produce curvature fluctuations,

it is possible to have isocurvature perturbations: an over-density in one species compensates for an under-density in
another, producing no net curvature. These entropy, or isocurvature perturbations have a measurable effect on the
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TABLE 5
Primordial spectrum: tensors & running scalar indexa

Parameter WMAP +eCMB +eCMB+BAO +eCMB+BAO+H0

Tensor mode amplitudeb

r < 0.38 (95% CL) < 0.17 (95% CL) < 0.12 (95% CL) < 0.13 (95% CL)

ns 0.992± 0.019 0.970± 0.011 0.9606± 0.0084 0.9636± 0.0084

Running scalar indexb

dns/d ln k −0.019± 0.025 −0.022+0.012
−0.011 −0.024± 0.011 −0.023± 0.011

ns 1.009± 0.049 1.018± 0.029 1.020± 0.029 1.020± 0.029

Tensors and running, jointlyb

r < 0.50 (95% CL) < 0.53 (95% CL) < 0.43 (95% CL) < 0.47 (95% CL)

dns/d ln k −0.032± 0.028 −0.039± 0.016 −0.039± 0.015 −0.040± 0.016

ns 1.058± 0.063 1.076± 0.048 1.068+0.045
−0.044 1.075± 0.046

a A complete list of parameter values for these models may be found at
http://lambda.gsfc.nasa.gov/.
b The tensor mode amplitude and scalar running index parameter are each fit singly, and then
jointly. In models with running, the nominal scalar index is quoted at k0 = 0.002 Mpc−1.

CMB by shifting the acoustic peaks in the power spectrum. For cold dark matter and photons, we define the entropy
perturbation field

Sc,γ ≡
δρc

ρc
− 3δργ

4ργ
(10)

(Bean et al. 2006; Komatsu et al. 2009). The relative amplitude of its power spectrum is parameterized by α,

α

1− α
≡ PS(k0)

PR(k0)
, (11)

with k0 = 0.002 Mpc−1.
We consider two types of isocurvature modes: those which are completely uncorrelated with the curvature modes

(with amplitude α0), motivated by the axion model, and those which are anti-correlated with the curvature modes (with
amplitude α−1), motivated by the curvaton model. For the latter, we adopt the convention in which anti-correlation
increases the power at low multipoles (Komatsu et al. 2009).

The constraints on both types of isocurvature modes are given in Table 6. We do not detect a significant contribution
from either type of perturbation in the nine-year data, whether or not additional data are included in the fit. With
WMAP data alone, the limits are slightly improved over the seven-year results (Larson et al. 2011), but the addition
of the new eCMB data improves limits by a further factor of ∼2. Adding the BAO data (§2.2.2) and H0 data (§2.2.3)
further improves the limits, to

α−1 < 0.0039 (95% CL)

α0 < 0.047 (95% CL)
WMAP+eCMB+BAO+H0,

due to the fact that these data help to break a modest degeneracy in the CMB anisotropy between the isocurvature
modes and the ΛCDM parameters given in Table 6.

4.3. Number of Relativistic Species
4.3.1. The number of relativistic species and the CMB power spectrum

Let us write the energy density of relativistic particles near the epoch of photon decoupling, z ≈ 1090, as

ρr ≡ ργ + ρν + ρer, (12)

where, in natural units, ργ = π2

15 T 4
γ is the photon energy density, ρν = 7

8
π2

15 NνT 4
ν is the neutrino energy density, and

ρer denotes the energy density of “extra radiation species.” (The factor of 7/8 in the neutrino density arises from the
Fermi-Dirac distribution.) In the standard model of particle physics, Nν = 3.04 (Dicus et al. 1982; Mangano et al.
2002), while in the standard thermal history of the universe, Tν = (4/11)1/3 Tγ (e.g., Weinberg 1972).

Since we don’t know the nature of an extra radiation species, we cannot specify its energy density or temperature
uniquely. For example, ρer could be comprised of bosons or fermions. Nevertheless, it is customary to parameterize
the number of extra radiation species as if they were neutrinos, and write

ρν + ρer ≡
7π2

120
Neff T 4

ν , (13)
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TABLE 6
Isocurvature modesa

Parameter WMAP +eCMB +eCMB+BAO +eCMB+BAO+H0

Anti-correlated modesb

α−1 < 0.012 (95% CL) < 0.0076 (95% CL) < 0.0035 (95% CL) < 0.0039 (95% CL)

Ωch2 0.1088± 0.0050 0.1097± 0.0037 0.1160± 0.0020 0.1151± 0.0019

ns 0.994± 0.017 0.977± 0.011 0.9631+0.0087
−0.0088 0.9662+0.0085

−0.0087

σ8 0.807+0.025
−0.024 0.802± 0.018 0.823+0.014

−0.013 0.821+0.014
−0.013

Uncorrelated modesc

α0 < 0.15 (95% CL) < 0.061 (95% CL) < 0.043 (95% CL) < 0.047 (95% CL)

Ωch2 0.1093± 0.0056 0.1115± 0.0036 0.1161± 0.0020 0.1152± 0.0019

ns 0.994± 0.021 0.970± 0.011 0.9608+0.0086
−0.0085 0.9639+0.0085

−0.0084

σ8 0.805± 0.027 0.805± 0.018 0.821± 0.014 0.819± 0.014

a A complete list of parameter values for these models may be found at
http://lambda.gsfc.nasa.gov/.
b The anti-correlated isocurvature amplitude comprises one additional parameter in the ΛCDM fit.
The remaining parameters in this table section are given for trending.
c The uncorrelated isocurvature amplitude comprises one additional parameter in the ΛCDM fit. The
remaining parameters in this table section are given for trending.

where Neff is the effective number of neutrino species, which does not need to be an integer. With this parameterization,
the total radiation energy density is

ρr = ργ

[
1 +

7
8

(
4
11

)4/3

Neff

]
' ργ(1 + 0.2271Neff). (14)

While photons interact with baryons efficiently at z & 1090, neutrinos do not interact much at all for z � 1010. As a
result, one can treat neutrinos as free-streaming particles. Here, we also treat extra radiation species as free-streaming.
With this assumption, one can use the measured CTT

l spectrum to constrain Neff (Hu et al. 1995; Hu et al. 1999;
Bowen et al. 2002; Bashinsky & Seljak 2004). Section 6.2 of Komatsu et al. (2009) and §4.7 of Komatsu et al. (2011)
discuss previous attempts to constrain Neff from the CMB and provide references. More recently, Dunkley et al.
(2011) and Keisler et al. (2011) constrain Neff using the seven-year WMAP data combined with ACT and SPT data,
respectively. In this paper, we assume the sound speed and anisotropic stress of any extra radiation species are the
same as for neutrinos. See Archidiacono et al. (2011); Smith et al. (2012); Archidiacono et al. (2012) for constraints
on other cases.

Neutrinos (and ρer) affect the power spectrum, CTT
l , in four ways. To illustrate and explain each of these effects,

Figure 8 compares models with Neff = 3.04 and Neff = 7, adjusted in stages to match the two spectra as closely as
possible.

1. Peak locations - The extra radiation density increases the early expansion rate via the Friedmann equation,
H2 = 8πG

3 (ρm + ρr). As a result, increasing Neff from 3.04 to 7 reduces the comoving sound horizon, rs, at
the decoupling epoch, from 146.8 Mpc to 130.2 Mpc. The expansion rate after matter-radiation equality is
less affected, so the angular diameter distance to the decoupling epoch, dA, is only slightly reduced (by 2.5%).
Therefore, increasing Neff reduces the angular size of the acoustic scale, θ∗ ≡ rs/dA, which determines the peak
positions. A change in θ∗ can be absorbed by rescaling l by a constant factor. In the top-left panel of Figure 8,
we have rescaled l for the Neff = 7 model by a factor of 0.890, the ratio of θ∗ for these two models (θ∗ = 0.◦5961,
0.◦5306 for Neff = 3.04, 7, respectively). This rescaling brings the peak positions of these models into agreement,
except for a small additive shift in peak positions; see Bashinsky & Seljak (2004).

2. Early Integrated-Sachs-Wolfe effect - Extra radiation density delays the epoch of matter-radiation equality
and thus enhances the first and second peaks via the Early Integrated-Sachs-Wolfe (ISW) effect (Hu & Sugiyama
1995). This effect can be compensated by increasing the cold dark matter density in the Neff = 7 model from
Ωch

2 = 0.1107 to 0.1817, which brings the matter-radiation equality epoch back into agreement. (We do not
change Ωbh

2, as that changes the first-to-second peak ratio.) The top-right panel of Figure 8 shows the spectra
after making this adjustment. Note that changing Ωch

2 also changes θ∗, so the l axis is rescaled by 0.957 for the
Neff = 7 model in this panel.

3. Anisotropic stress - Relativistic species that do not interact effectively with themselves or with other species
cannot be described as a (perfect) fluid. As a result, the distribution function, f(x,p, t), of free-streaming
particles has a non-negligible anisotropic stress,

πij ≡
∫

d3p

(2π)3
p

(
p̂ip̂j −

1
3
δij

)
f(x,p, t), (15)
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Fig. 8.— An illustration of four effects in the CMB anisotropy that can compensate for a change in the total radiation density, ρr,
parameterized here by an effective number of neutrino species, Neff . The filled circles with errors show the nine-year WMAP data (in
black), the ACT data (in green, Das et al. 2011), and the SPT data (in violet, Keisler et al. 2011). The dashed lines show the best-fit model
with Neff = 3.04, while the solid lines show models with Neff = 7 with selected adjustments applied. (The other parameters in the dashed
model are Ωbh

2 = 0.02270, Ωch2 = 0.1107, H0 = 71.38 km/s/Mpc, ns = 0.969, ∆2
R = 2.384× 10−9, and τ = 0.0856.) Top-left: the l-axis

for the Neff = 7 model has been scaled so that both models have the same angular diameter distance, dA, to the surface of last scattering.
Top-right: the cold dark matter density, Ωch2, has been adjusted in the Neff = 7 model so that both models have the same redshift of
matter-radiation equality, zeq. Bottom-left: the amplitude of the Neff = 7 model has been re- scaled to counteract the suppression of power
that arises when the neutrino’s anisotropic stress alters the metric perturbation. Bottom-right: the helium abundance, YP , in the Neff = 7
model has been adjusted so that both models have the same diffusion damping scale.

as well as higher-order moments. This term alters metric perturbations during the radiation era (via Einstein’s
field equations) and thus temperature fluctuations on scales l & 130, since those scales enter the horizon during
the radiation era. On larger scales, fluctuations enter the horizon during the matter era and are less affected by
this term. Temperature fluctuations on these scales are given by the Sachs-Wolfe formula, δT/T = −R/5, while
those on smaller scales (ignoring the effect of baryons) are given by δT/T = − (1 + 4fν/15)−1R cos(krs) (Hu &
Sugiyama 1996), where fν is the fraction of the radiation density that is free-streaming,

fν(Neff) ≡ 0.2271Neff

1 + 0.2271Neff
. (16)

The small-scale anisotropy is enhanced by a factor of 5(1 + 4fν/15)−1 due to the decay of the gravitational
potential at the horizon crossing during the radiation era. Since the anisotropic stress alters the gravitational
potential (via the field equations), it also alters the degree to which the small-scale anisotropy is enhanced
relative to the large-scale anisotropy. Therefore, the effect of anisotropic stress can be removed by multiplying
CTT

l (l & 130) by (1 + 4fν/15)2. In the bottom-left panel of Figure 8, we have multiplied CTT
l at all l by

[1 + 4fν(7)/15]2/[1 + 4fν(3.04)/15]2, where fν(7) = 0.6139 and fν(3.04) = 0.4084. The two models now agree
well, but the Neff = 7 model is greater than the standard model at l . 130 because the anisotropic stress term
does not affect these multipoles.

4. Enhanced damping tail - While the increased expansion rate reduces the sound horizon, rs, it also reduces
the diffusion length, rd, that photons travel by random walk. The mean free path of a photon is λC = 1/(σT ne).
Over the age of the universe, t, photons diffuse a distance rd ≈

√
3ct/λC λC ∝

√
λC/H, and fluctuations

within rd are exponentially suppressed (Silk damping, Silk 1968). Now, while the sound horizon is proportional
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TABLE 7
Relativistic degrees of freedom and Big Bang Nucleosynthesisa

Parameter WMAP +eCMB +eCMB+BAO +eCMB+BAO+H0

Number of relativistic speciesb

Neff > 1.7 (95% CL) 3.89± 0.67 3.55± 0.60 3.84± 0.40

ns 0.988± 0.027 0.985+0.018
−0.019 0.969± 0.015 0.975± 0.010

Primordial helium abundanceb

YHe < 0.42 (95% CL) 0.299± 0.027 0.295± 0.027 0.299± 0.027

ns 0.973± 0.016 0.982± 0.013 0.973± 0.011 0.977± 0.011

Big bang nucleosynthesisc

Neff · · · 2.92± 0.79 2.58± 0.67 3.55+0.49
−0.48

YHe · · · 0.302+0.038
−0.039 0.311+0.036

−0.037 0.278+0.034
−0.032

ns · · · 0.978± 0.019 0.965± 0.015 0.980± 0.011

a A complete list of parameter values for these models may be found at
http://lambda.gsfc.nasa.gov/.
b The parameters Neff and YHe comprise one additional parameter each in these table
sections.
c The parameters Neff and YHe are fit jointly in this section.

to 1/H, the diffusion length is proportional to 1/
√

H, due to the random walk nature of the diffusion, thus,
rd/rs ∝

√
H. As a result, increasing the expansion rate increases the diffusion length relative to the sound

horizon, which enhances the Silk damping of the small-scale anisotropy (Bashinsky & Seljak 2004). Note that
rd/rs also depends on the mean free path of the photon, rd/rs ∝

√
HλC ∝

√
H/ne, thus one can compensate

for the increased expansion rate by increasing the number density of free electrons. One way to achieve this is
to reduce the helium abundance, Yp (Bashinsky & Seljak 2004; Hou et al. 2011): since helium recombines earlier
than the epoch of photon decoupling, the number density of free electrons at the decoupling epoch is given by
ne = (1 − Yp) nb, where nb is the number density of baryons (Hu et al. 1995, see also Section 4.8 of Komatsu
et al. 2011). In the bottom-right panel of Figure 8, we show CTT

l for the Neff = 7 model after reducing Yp

from 0.24 to 0.08308, which preserves the ratio rd/rs. The solid and dashed model curves now agree completely
(except for l . 130 where our compensation for anisotropic stress was ad hoc).

4.3.2. Measurements of Neff and YHe: testing Big Bang nucleosynthesis

Using the five-year WMAP data alone, Dunkley et al. (2009) measured the effect of anisotropic stress on the power
spectrum and set a lower bound on Neff . However, BAO and H0 data were still required to set an upper bound due to
a degeneracy with the matter-radiation equality redshift (Komatsu et al. 2009). This was unchanged for the seven-year
analysis (Komatsu et al. 2011). Now, with much improved measurements of the enhanced damping tail from SPT
and ACT (§2.2.1), CMB data alone are able to determine Neff (Dunkley et al. 2011; Keisler et al. 2011). Using the
nine-year WMAP data combined with SPT and ACT, we find

Neff = 3.89± 0.67 (68% CL) WMAP+eCMB; YHe fixed.

The inclusion of lensing in the eCMB likelihood helps this constraint because the primary CMB fluctuations are still
relatively insensitive to a combination of Neff and Ωmh2, as described above. CMB lensing data help constrain Ωmh2

by constraining σ8. The measurement is further improved by including the BAO and H0 data, which reduces the
degeneracy with the matter-radiation equality redshift. We find

Neff = 3.84± 0.40 (68% CL) WMAP+eCMB+BAO+H0; YHe fixed,

which is consistent with the standard model value of Neff = 3.04. We thus find no evidence for the existence of extra
radiation species.

As noted above, this measurement of Neff relies on the damping tail measured by ACT and SPT, which is also
affected by the primordial helium abundance, YHe. Figure 9 shows the joint, marginalized constraints on Neff and YHe

using the above two data combinations. As expected, these two parameters are anti-correlated when fit to CMB data
alone (black contours). When BAO and H0 measurements are included, we find

Neff = 3.55+0.49
−0.48

YHe = 0.278+0.034
−0.032

(68% CL) WMAP+eCMB+BAO+H0.

When combined with our measurement of the baryon density, both of these values are within the 95% CL region of
the standard Big Bang nucleosynthesis (BBN) prediction (Steigman 2008), shown by the green curve in Figure 9. Our
measurement provides strong support for the standard BBN scenario. Table 7 summarizes the nine-year measurements
of Neff and YHe.
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Fig. 9.— Joint, marginalized constraints (68% and 95% CL) on the primordial helium abundance, YHe, and the energy density of
“extra radiation species,” parameterized as an effective number of neutrino species, Neff . These constraints are derived from the nine-year
WMAP+eCMB data (black), and from WMAP+eCMB+BAO+H0 data (red). The green curve shows the predicted dependence of YHe
on Neff from Big Bang Nucleosynthesis; the dashed lines indicate the standard model: Neff = 3.04, YHe = 0.248.

4.4. Neutrino Mass
The mean energy of a relativistic neutrino at the epoch of recombination is 〈E〉 = 0.58 eV. In order for the CMB

power spectrum to be sensitive to a non-zero neutrino mass, at least one species of neutrino must have a mass in excess
of this mean energy. If one assumes that there are Neff = 3.04 neutrino species with degenerate mass eigenstates, this
would suggest that the lowest total mass that could be detected with CMB data is

∑
mν ∼ 1.8 eV. Using a refined

argument, Ichikawa et al. (2005) argue that one could reach ∼1.5 eV. When we add
∑

mν as a parameter to the
ΛCDM model we obtain the fit given in Table 8, specifically∑

mν < 1.3 eV (95% CL) WMAP only,

which is at the basic limit just presented.
When the mass of individual neutrinos is less than 0.58 eV, the CMB power spectrum alone (excluding CMB lensing)

cannot determine
∑

mν ; however, tighter limits can be obtained by combining CMB data with BAO and H0 data.
For a given Ωch

2 and H0, adding massive neutrinos results in a larger present-day total matter density, Ωm, giving a
smaller dark energy density for a flat universe, and hence a smaller angular diameter distance to the decoupling epoch.
This change in distance can be compensated by lowering H0. By the same token, for a given Ωch

2+Ωνh2, adding
massive neutrinos results in a smaller matter density at the decoupling epoch (since neutrinos are still relativistic
then), which produces a larger sound horizon size at that epoch. Both of these effects cause the angular size of the
acoustic scale, θ∗, to be larger, shifting the CMB peaks to larger angular scales. Furthermore, a reduced matter density
at the decoupling epoch produces an earlier matter-radiation equality epoch giving a larger early ISW effect which,
in turn, shifts the first peak position to a larger angular scale. This effect can again be compensated by lowering H0.
Therefore, independent information on H0 obtained from local distance indicators and from BAO data helps tighten
the limit on

∑
mν (Ichikawa et al. 2005). We find∑

mν < 0.44 eV (95% CL) WMAP+eCMB+BAO+H0,

which is 25% lower than the bound of 0.58 eV that was set with the seven-year analysis (Komatsu et al. 2011).
Since massive neutrinos have a large velocity dispersion, they cannot cluster on small scales. This means that a

fraction of matter density in a low redshift universe (when neutrinos are non-relativistic) cannot cluster, which yields
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TABLE 8
Neutrino massa

Parameter WMAP +eCMB +eCMB+BAO +eCMB+BAO+H0

New parameterP
mν (eV) < 1.3 (95% CL) < 1.5 (95% CL) < 0.56 (95% CL) < 0.44 (95% CL)

Related parameters

σ8 0.706+0.077
−0.076 0.660+0.066

−0.061 0.750+0.044
−0.042 0.770± 0.038

Ωch2 0.1157+0.0048
−0.0047 0.1183± 0.0044 0.1133± 0.0026 0.1132± 0.0025

ΩΛ 0.641+0.065
−0.068 0.586+0.080

−0.076 0.695± 0.013 0.707± 0.011

109∆2
R 2.48± 0.12 2.59± 0.12 2.452+0.075

−0.074 2.438± 0.074

ns 0.962± 0.016 0.947± 0.014 0.9628± 0.0086 0.9649+0.0085
−0.0083

a A complete list of parameter values for this model may be found at
http://lambda.gsfc.nasa.gov/.

TABLE 9
Non-flat ΛCDM Constraintsa

Parameter WMAP +eCMB +eCMB+BAO +eCMB+H0 +eCMB+BAO+H0

New parameter

Ωk −0.037+0.044
−0.042 −0.001± 0.012 −0.0049+0.0041

−0.0040 0.0049± 0.0047 −0.0027+0.0039
−0.0038

Related parameters

Ωtot 1.037+0.042
−0.044 1.001± 0.012 1.0049+0.0040

−0.0041 0.9951± 0.0047 1.0027+0.0038
−0.0039

Ωm 0.19 < Ωm < 0.95 (95% CL) 0.273± 0.049 0.292± 0.010 0.252± 0.017 0.2855+0.0096
−0.0097

ΩΛ 0.22 < ΩΛ < 0.79 (95% CL) 0.727± 0.038 0.713± 0.011 0.743± 0.015 0.717± 0.011

H0 (km/s/Mpc) 38 < H0 < 84 (95% CL) 71.2± 6.5 68.0± 1.0 73.4+2.2
−2.3 68.92+0.94

−0.95
t0 (Gyr) 14.8± 1.5 13.71± 0.65 13.99± 0.17 13.46± 0.24 13.88± 0.16

a A complete list of parameter values for this model may be found at http://lambda.gsfc.nasa.gov/.

a shallower gravitational potential well, hence a lower value of σ8. As a result, one sees a clear negative correlation
between σ8 and

∑
mν (see, e.g., the middle panel of Figure 17 of Komatsu et al. 2009). Therefore, adding independent

information on σ8 obtained from, e.g., the abundance of galaxy clusters (Vikhlinin et al. 2009b; Mantz et al. 2010)
helps tighten the limit on

∑
mν . See §5 for a discussion of recent measurements of σ8 from various cosmological probes

such as cluster abundances, peculiar velocities, and gravitational lensing.

4.5. Spatial Curvature
The geometric degeneracy in the angular diameter distance to the surface of last scattering limits our ability to

constrain spatial curvature, Ωk, with primary CMB fluctuations alone (Bond et al. 1997; Zaldarriaga et al. 1997). For
example, the nine-year WMAP data gives a measurement with 4% uncertainty,

Ωk = −0.037+0.044
−0.042 WMAP-only,

(see Table 9). However, with the recent detection of CMB lensing in the high-l power spectrum (Das et al. 2011; van
Engelen et al. 2012), the degeneracy between Ωm and ΩΛ is now substantially reduced. This produces a significant
detection of dark energy, and tight constraints on spatial curvature using only CMB data: when the SPT and ACT
data, including the lensing constraints, are combined with nine-year WMAP data we find

ΩΛ = 0.727± 0.038

Ωk = −0.001± 0.012
WMAP+eCMB.

Figure 43 in Bennett et al. (2012) shows the joint constraints on (Ωm,ΩΛ) (and Ωk, implicitly) from the currently
available CMB data. Combining the CMB data with lower-redshift distance indicators, such H0, BAO, or supernovae
further constrains Ωk (Spergel et al. 2007). Assuming the dark energy is vacuum energy (w = −1), we find

Ωk = −0.0027+0.0039
−0.0038 WMAP+eCMB+BAO+H0,

which limits spatial curvature to be no more than 0.4% (68% CL) of the critical density. These (Ωm,ΩΛ) constraints
are also shown in Figure 43 of Bennett et al. (2012).

The limits on curvature weaken slightly if dark energy is allowed to be dynamical, w 6= −1. However, with new
distance measurements at somewhat higher redshift, where dynamical dark energy starts to become significant, the
degradation factor is substantially less than it was in our previous analyses. We revisit this topic in §4.6.
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TABLE 10
Dark energy constraintsa

Parameter WMAP +eCMB +eCMB+BAO+H0 +eCMB+BAO+H0+SNe

Constant equation of state; flat universe

w −1.71 < w < −0.34 (95% CL) −1.07+0.38
−0.41 −1.073+0.090

−0.089 −1.037+0.071
−0.070

Constant equation of state; non-flat universe

w > −2.1 (95% CL) · · · −1.19± 0.12 −1.077± 0.072

Ωk −0.052+0.051
−0.054 · · · −0.0072+0.0042

−0.0043 −0.0065± 0.0040

Non-constant equation of state; flat universe

w0 · · · · · · −1.34± 0.18 −1.17+0.13
−0.12

wa · · · · · · 0.85± 0.47b 0.35+0.50
−0.49

a A complete list of parameter values for these models may be found at http://lambda.gsfc.nasa.gov/.
b The quoted error on wa from WMAP+eCMB+BAO+H0 is smaller than that from
WMAP+eCMB+BAO+H0+SNe. This is due to the imposition of a hard prior, wa < 0.2 − 1.1w0, de-
picted in Figure 10. Without this prior, the upper limit on wa for WMAP+eCMB+BAO+H0 would extend
to larger values.

4.6. Dark Energy
The dark energy equation-of-state parameter, w ≡ Pde/ρde, where Pde and ρde are the pressure and density of dark

energy, respectively, governs whether ρde changes with time (w 6= −1) or not (w = −1). CMB data alone (excluding
the effect of CMB gravitational lensing) are unable to determine w because dark energy only affects the CMB through
1) the comoving angular diameter distance to the decoupling epoch, dA(z∗), and 2) the late-time ISW effect. The ISW
effect has limited ability to constrain dark energy due to its large cosmic variance. The angular diameter distance to
z∗ depends on several parameters (Ωm,Ωk, ΩΛ, w, and H0), thus a measurement of the angular diameter distance to
a single redshift cannot distinguish these parameters.

Distance measurements to multiple redshifts greatly improve the constraint on w. These include the Hubble constant,
H0, which determines the distance scale in the low-redshift universe; DV ’s from BAO measurements; and luminosity
distances from high-redshift Type Ia supernovae. Gravitational lensing of the CMB also probes w by measuring the
ratio of the angular diameter distance to the source plane (the decoupling epoch) and to the lens planes (matter
fluctuations in the range of z ∼ 1 − 2). Current CMB lensing data do not yet provide competitive constraints on w,
though they do improve the CMB-only measurement: compare the “WMAP” and “+eCMB” columns in Table 10.

New measurements of the BAO scale (§2.2.2) and H0 (§2.2.3) significantly tighten the 68% CL errors on a constant
w for both flat and non-flat models

w =

{
−1.073+0.090

−0.089 (flat)

−1.19± 0.12 (non-flat)
WMAP+eCMB+BAO+H0.

These constraints represent 35% and 55% improvements, respectively, over those from the seven-year
WMAP+BAO+H0 combination (see the fourth column in Table 4 of Komatsu et al. 2011): w = −1.10 ± 0.14
(flat) and w = −1.44 ± 0.27 (non-flat). Adding 472 Type Ia supernovae compiled by Conley et al. (2011) improves
these limits to

w =

{
−1.084± 0.063 (flat)

−1.122+0.068
−0.067 (non-flat)

WMAP+eCMB+BAO+H0+SNe,

where the errors include systematic uncertainties in the supernova data. Note that these limits are somewhat weaker
than those reported in Komatsu et al. (2011), Table 4, column 6, despite the smaller number of supernovae (397) in the
“Constitution” sample compiled by Hicken et al. (2009), as that analysis did not include SNe systematic uncertainties
in the seven-year analysis.

When w is allowed to vary with the scale factor according to w(a) = w0 + wa(1 − a) (Chevallier & Polarski 2001;
Linder 2003), we find, for a flat universe20

w0 = −1.17+0.13
−0.12

wa = 0.35+0.50
−0.49

WMAP+eCMB+BAO+H0+SNe.

Figure 10 shows the joint, marginalized constraint on w0 and wa. A cosmological constant (w0 = −1 and wa = 0) is
at the boundary of the 68% CL region, indicating that the current data are consistent with a time-independent dark
energy density. Comparing this measurement with the seven-year result in Figure 13 of Komatsu et al. (2011), we note
that adding the new BAO and H0 data significantly reduces the allowed parameter space by eliminating wa . −1.

20 We consider only the flat case here since the non-flat case with wa is not well-constrained by the present data.
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Fig. 10.— The joint, marginalized constraint on w0 and wa, assuming a flat universe. A cosmological constant (w0 = −1, wa = 0) is at
the boundary of the 68% CL region allowed by theWMAP+eCMB+BAO+H0+SNe data, indicating that the current data are consistent
with a non-evolving dark energy density. The shaded region is excluded by a hard prior, wa < 0.2− 1.1w0, in our fits.

4.6.1. WMAP Nine-year Distance Posterior

The “WMAP distance posterior” gives the likelihood of three variables: the acoustic scale, lA, the shift parameter,
R, and the decoupling redshift, z∗. This likelihood is based on, and extends, the original idea put forward by several
authors (Wang & Mukherjee 2007; Wright 2007; Elgarøy & Multamäki 2007). It allows one to quickly evaluate the
likelihood of various dark energy models given the WMAP data, without the need to run a full Markov Chain Monte
Carlo exploration of the likelihood.

Here, we provide an updated distance posterior based on the nine-year data. For details on how to use this simplified
likelihood, the definition of the above variables, and the limitation of this approach, see Section 5.5 of Komatsu et al.
(2011) and Section 5.4 of Komatsu et al. (2009).

The likelihood is given by
−2 ln L = (x− d)T C−1(x− d), (17)

where x = (lA, R, z∗) are the parameter values for the proposed model, and the data vector d has components

d1 = lWMAP
A = 302.40

d2 = RWMAP = 1.7246
d3 = zWMAP

∗ = 1090.88.

These are the maximum-likelihood values obtained from the nine-year data assuming a constant dark energy equation
of state and non-zero spatial curvature (the ‘OWCDM’ model). The elements of the inverse covariance matrix, C−1,
are given in Table 11.

4.7. Constraints on Cosmological Birefringence
If the polarization direction on the sky were uniformly rotated by an angle ∆α, then some of the E-mode polarization

would be converted to B-mode polarization. This can arise from a mis-calibration of the detector polarization angle,
but also from a physical mechanism called “cosmological birefringence,” in which global parity symmetry is broken on
cosmological scales (Lue et al. 1999; Carroll 1998). Such an effect yields non-vanishing TB and EB correlations, hence
non-vanishing Ur. A non-detection of these correlations limits ∆α.



22

TABLE 11
Inverse covariance matrix for

the WMAP distance posteriors

lA R z∗

lA 3.182 18.253 −1.429
R 11887.879 −193.808
z∗ 4.556

A rotation of the polarization plane by an angle ∆α gives the following transformation

CTE,obs
l =CTE

l cos(2∆α), (18)

CTB,obs
l =CTE

l sin(2∆α), (19)

CEE,obs
l =CEE

l cos2(2∆α), (20)

CBB,obs
l =CEE

l sin2(2∆α), (21)

CEB,obs
l =

1
2
CEE

l sin(4∆α), (22)

where the spectra on the right-hand side are the primordial power spectra in the absence of rotation, while the spectra
on the left-hand side are what we would observe in the presence of rotation. We assume there is no B-mode polarization
in the absence of rotation.

The low-l TB and EB data at l ≤ 23 yield ∆α = −0.◦07 ± 4.◦82 (68% CL), while the high-l TB data yield ∆α =
−0.◦40± 1.◦30 (68% CL). The high-l EB data are too noisy to yield a significant limit. Combining all the multipoles,
we find

∆α = −0.◦36± 1.◦24 (stat.)± 1.◦5 (syst.) (68% CL).

Here, we have added the systematic uncertainty of ±1.◦5, to account for uncertainty in the WMAP detector polarization
angle (Page et al. 2003, 2007). The WMAP limit on ∆α is now dominated by this systematic uncertainty. The
statistical error has modestly improved from 1.◦4 with the seven-year data (see Section 4.5 of Komatsu et al. 2011).

5. OTHER CONSTRAINTS ON MATTER FLUCTUATIONS

In this section, we summarize recent determinations of the matter fluctuation amplitude as traced by various measure-
ments of large-scale structure. These include: cluster counts from optically-selected, X-ray-selected, and SZ-selected
samples; measurements of N-point statistics in SZ maps, measurements of peculiar velocities, measurements of optical
shear, and measurements of CMB lensing. To date, all of these observations are consistent with the WMAP nine-year
ΛCDM fits, which give σ8 = 0.821± 0.023 and σ8Ω0.5

m = 0.434± 0.029.

5.1. Cluster Observations
Clusters are rare, high-mass peaks in the density field, hence their number counts provide an important probe of the

matter fluctuation amplitude and, in turn, cosmology (see Allen et al. (2011) for a recent review). For cosmological
studies, the main challenge with clusters is relating the astronomical observable (SZ decrement, X-ray flux, optical
richness, etc.) to the mass of the cluster. Since the mass function is so steep, a small error in the zero-point of the
mass-to-observable scaling can produce a significant error in the determination of cosmological parameters.

In the past two years, many new SZ-selected clusters have been reported by Planck (Planck Collaboration VIII
2011), ACT (Marriage et al. 2011; Menanteau et al. 2012), and SPT (Williamson et al. 2011; Reichardt et al. 2012b),
and they are providing new impetus for cosmological studies. Clusters are close to virial equilibrium, so they should
exhibit a tight relationship between integrated SZ decrement and mass; however, there are significant sources of non-
thermal pressure support that need to be modeled (Trac et al. 2011; Battaglia et al. 2012a,c). Estimates of cluster
mass based on X-ray data agree well with estimates based on Planck SZ measurements when one has both X-ray
and SZ data for the same cluster (Planck Collaboration X 2011; Planck Collaboration XI 2011), however, there are
intriguing discrepancies between some estimates based on optical and SZ data. This is seen in both the Planck (Planck
Collaboration XII 2011) and ACT data (Hand et al. 2011; Sehgal et al. 2012), and several groups are exploring this
discrepancy (Angulo et al. 2012; Rozo et al. 2012; Biesiadzinski et al. 2012).

The abundance of optically-selected clusters provided early, strong evidence that vacuum energy dominates the
universe today. Based on the number density of rich clusters, Fan et al. (1997) measured σ8 = 0.83 ± 0.15 and
Ωm = 0.3 ± 0.1. A recent analysis by Tinker et al. (2012), combining two observables from the Sloan Digital Sky
Survey: the galaxy two-point correlation function and the mass-to-galaxy number ratio within clusters, found σ8Ω0.5

m =
0.465±0.026, with Ωm = 0.29±0.03 and σ8 = 0.85±0.06. Zu et al. (2012) used weak lensing measurements to calibrate
the masses of MaxBCG clusters in the SDSS data; they find σ8(Ωm/0.325)0.501 = 0.828± 0.049.

X-ray-selected cluster samples also provide constraints on the amplitude of matter fluctuations. X-ray data allow
one to both select the sample and calibrate its mass under the assumption of hydrostatic equilibrium. Vikhlinin et al.
(2009b) analyze cosmological parameter constraints from their Chandra cluster sample. Fitting ΛCDM parameters
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to the cluster counts, they find σ8(ΩM/0.25)0.47 = 0.813 with a statistical error of ±0.012 and a systematic error of
±0.02, due to absolute mass calibration uncertainty.

With the new SZ-selected cluster samples, groups are calibrating the SZ-decrement-to-mass scaling using weak-
lensing measurements (Marrone et al. 2012; Miyatake et al. 2012; High et al. 2012; Planck Collaboration III 2012);
X-ray measurements (Bonamente et al. 2012; Benson et al. 2011); and galaxy velocity dispersions (Sifon et al. 2012).
Remarkably, these different groups are reporting fluctuation amplitudes that are consistent with the WMAP ΛCDM
fluctuation amplitude. For example, Benson et al. (2011) report σ8(Ωm/0.25)0.30 = 0.785± 0.037 based on an analysis
of 18 SZ-selected clusters from the SPT survey, while Sehgal et al. (2011) report σ8 = 0.821±0.044 and w = −1.05±0.20
based on a joint analysis of WMAP seven-year data and 9 optically-confirmed SZ clusters.

The n-point correlation function of SZ-selected clusters provides complementary information to cluster counts (the
1-point function). The 2-point function is a potentially-powerful probe of σ8 (Komatsu & Seljak 2002); however, it is
sensitive to the low-mass end of the Y (M) scaling relation for clusters, which is subject to astrophysical corrections
(Shaw et al. 2010; Battaglia et al. 2010, 2012a). Reichardt et al. (2012a) use simulations and observations to calibrate
the SZ power spectrum (2-point function); they apply this to the SPT data to find σ8 = 0.807± 0.016. Higher-order
correlation functions are less sensitive to low-mass clusters, so these moments are less affected by non-thermal processes
and more sensitive to the matter fluctuation amplitude (Hill & Sherwin 2012; Bhattacharya et al. 2012). Measurement
of the 3-point function in the ACT SZ data (Wilson et al. 2012) yields σ8 = 0.78+0.03

−0.04. All of these measurements are
consistent with the WMAP nine-year measurement of σ8 = 0.821± 0.023, assuming ΛCDM.

5.2. Peculiar Velocities
Galaxy peculiar velocities provide another independent probe of gravitational potential fluctuations. Hudson &

Turnbull (2012) combine redshift-space distortion data from BOSS (Reid et al. 2012), 6dFGS (Beutler et al. 2012),
and WiggleZ (Blake et al. 2011), with local measurements of the peculiar velocity field, to find Ωm = 0.259 ± 0.045,
σ8 = 0.748± 0.035, and a growth rate of γ ≡ d lnD/d ln a = 0.619± 0.514.

The kinematic Sunyaev-Zel’dovich (kSZ) effect can probe peculiar velocity fields over a wide range of redshift. Hand
et al. (2012) report the first kSZ measurements of peculiar velocities at z ∼ 0.35; they detect a signal consistent
with predictions from N-body simulations that are based on the WMAP seven-year ΛCDM parameters. Future kSZ
measurements should be able to provide precision tests of cosmology.

5.3. Gravitational Lensing
There are a number of complementary gravitational lensing techniques that measure the amplitude of potential

fluctuations:
CMB lensing - Large-scale structure along the line of sight deflects CMB photons and imparts a non-Gaussian

pattern on the CMB fluctuation field. This is most easily detected on scales smaller than those probed by WMAP.
Das et al. (2011) reported the first detection of CMB lensing using a measurement of the 4-point correlation function
in the ACT temperature maps; they report a deflection amplitude of AL = 1.16 ± 0.29, where AL = 1 is the value
predicted by the WMAP seven-year ΛCDM model. Using a similar technique on SPT data, van Engelen et al. (2012)
report AL = 0.90 ± 0.19. Since AL ∝ σ2

8 , this corresponds to an 8% measurement of σ8. When these CMB lensing
measurements are combined with WMAP seven-year data, they provide strong evidence for Dark Energy based purely
on CMB observations (Sherwin et al. 2011; van Engelen et al. 2012).

Cosmic shear - Measurements of cosmic shear in large optical surveys directly probe matter fluctuations on small
scales. Huff et al. (2011) analyzed 168 square degrees of co-added equatorial images from the Sloan Digital Sky
Survey (SDSS) and found σ8 = 0.636+0.109

−0.154 (when other cosmological parameters are fixed to the WMAP seven-year
ΛCDM values). Lin et al. (2012) analyzed 275 square degrees of co-added imaging from SDSS Stripe 82 and found
Ω0.7

m σ8 = 0.252+0.032
−0.052. Jee et al. (2012) report Ωm = 0.262 ± 0.051 and σ8 = 0.868 ± 0.071 from a cosmic shear

study using the Deep Lensing Survey; when their results are combined with the WMAP seven-year data, they find
Ωm = 0.278±0.018 and σ8 = 0.815±0.020. Semboloni et al. (2011) analyzed both the second and third-order moments
of the cosmic shear field in the HST COSMOS data; they found σ8(ΩM/0.3)0.49 = 0.78+0.11

−0.26 using the 3-point statistic,
in agreement with their result from the 2-point statistic: σ8(ΩM/0.3)0.67 = 0.70+0.11

−0.14.
Cross correlation - Correlating the cosmic shear field with the large-scale galaxy distribution measures galaxy

bias: the relationship been galaxies and dark matter. Mandelbaum et al. (2012) measured this cross-correlation in
the SDSS DR7 data and used the inferred bias to determine cosmological parameters. They report σ8(Ωm/0.25)0.57 =
0.80 ± 0.05, where the errors include both statistical and systematic effects. Cacciato et al. (2012) use combined
SDSS measurements of galaxy number counts, galaxy clustering, and galaxy-galaxy lensing, together with WMAP
seven-year priors on the scalar spectral index, the Hubble parameter, and the baryon density, to find Ωm = 0.278+0.023

−0.026

and σ8 = 0.763+0.064
−0.049 (95% CL).

Strong lensing - The statistics of lensed quasars probes the amplitude of fluctuations, the shape of galaxy halos,
and the large-scale geometry of the universe. Oguri et al. (2012) have analyzed the final data from the SDSS Quasar
Lens Search (19 lensed quasars selected from 50,836 candidates). They claim that the number of lensed quasar are
consistent with predictions based on WMAP seven-year parameters. Assuming the velocity function of galaxies does
not evolve with redshift, they report ΩΛ = 0.79+0.06

−0.07
+0.06
−0.06, where the errors are statistical and systematic, respectively.
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Fig. 11.— A compilation of the (Ωm, σ8) constraints from large scale structure observations, discussed in §5, compared to the constraints
obtained from CMB, BAO, and H0 data. The various large scale structure probes do not separately constrain the two parameters, and
have somewhat different degeneracy slopes among them, but these independent measurements are quite consistent. The following 1σ
regions are plotted: (a) σ8Ω0.5

m = 0.465 ± 0.026 from Tinker et al. (2012); (b) σ8(Ωm/0.325)0.501 = 0.828 ± 0.049 from Zu et al. (2012);
(c) σ8(Ωm/0.25)0.47 = 0.813 ± 0.032 from Vikhlinin et al. (2009b); (d) σ8(Ωm/0.25)0.3 = 0.785 ± 0.037 from Benson et al. (2011);

(e) σ8(Ωm/0.3)0.67 = 0.70+0.11
−0.14 from Semboloni et al. (2011); (f) σ8Ω0.7

m = 0.252+0.032
−0.052 from Lin et al. (2012); (g) WMAP only; (h)

WMAP+eCMB+BAO+H0; (i) ellipse whose major and minor axes are given by Ωm = 0.259± 0.045 and σ8 = 0.748± 0.035 from Hudson
& Turnbull (2012).

6. ON THE SZ EFFECT MEASURED BY WMAP AND Planck

In Komatsu et al. (2011), we demonstrated that WMAP is capable of detecting and characterizing the Sunyaev-
Zel’dovich (SZ) effect: the change in CMB temperature due to inverse Compton scattering of CMB photons off
hot electrons in clusters of galaxies (Zel’dovich & Sunyaev 1969; Sunyaev & Zel’dovich 1972). After our paper was
published, the Planck collaboration published their first measurements of the SZ effect (Planck Collaboration VIII
2011). Owing to Planck’s higher sensitivity and angular resolution, their measurements improve substantially upon
the precision with which the SZ effect is characterized.

In this section, we do not report any new results from the WMAP nine-year data, but we compare our seven-
year findings with the corresponding Planck measurements. In addition, we note that on-going blind SZ surveys at
arcminute angular scales by ACT (Marriage et al. 2011; Menanteau et al. 2012) and SPT (Song et al. 2012) provide
complementary information on clusters.

Coma cluster - Using the V- and W-band data, we are able to separate the SZ effect and the CMB fluctuation in
the direction of the Coma cluster (Abell 1656). As a result, we find that the Coma cluster is sitting at the bottom
of a ∼ −100 µK CMB fluctuation, and that all the previous determinations of the SZ effect toward Coma that did
not identify the primary CMB overestimated the SZ signal by about 25%. Our radial profile of the Coma cluster (see
Figure 14 of Komatsu et al. 2011) is in excellent agreement with the much-improved radial profile measured by Planck
(see Figure 4 of Planck Collaboration X 2012).

Agreement with X-ray-predicted SZ signal - The seven-year WMAP data are sensitive enough to measure
the SZ effect toward other nearby clusters. Among 49 z < 0.1 clusters with detailed Chandra observations (Vikhlinin
et al. 2009a), 29 are large enough to be resolved by WMAP and are outside the KQ75y7 sky mask. Among these,
we detected the SZ effect in 20 clusters whose masses, M500, are greater than 2 × 1014 h−1 M�. The Chandra data
allow us to predict the SZ signal in each these clusters without relying on any scaling relations. We find very good
agreement between the measured and predicted signals (see Figure 15 of Komatsu et al. 2011): when the Chandra-
based prediction is fit to the SZ data from these 20 clusters, the best-fit amplitude is 0.82±0.12 (68% CL; see Table 12
of Komatsu et al. 2011). This agreement has been confirmed by the Planck collaboration with striking precision (see
the left panel of Figure 4 of Planck Collaboration V 2012). Their analysis used 62 z < 0.5 clusters whose masses are
greater than M500 = 2× 1014 h−1 M�.
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Comparison with the universal pressure profile - For a given cluster, the measured and predicted SZ signals
agree well, if the prediction is derived from the detailed X-ray data on the same cluster. However, the agreement is
not as good if the prediction is derived from the so-called “universal pressure profile,” (UPP21) proposed by Arnaud
et al. (2010): the best-fit amplitude for the 20 clusters above M500 = 2× 1014 h−1 M� is 0.660± 0.095 (68% CL; see
Table 12 of Komatsu et al. 2011). The Planck collaboration observes the same trend with a similar magnitude (see
the left panel of Figure 4 of Planck Collaboration V 2012). This may be caused by sample differences: the UPP is the
median of a particular X-ray cluster sample, “REXCESS,” derived from the ROSAT All-sky Survey (Böhringer et al.
2007). There is no guarantee that the median of the X-ray sample coincides with the median of our sample or the
Planck sample. The disagreement between the UPP-based predictions and the WMAP SZ profiles means that WMAP
is sensitive to details beyond average cluster properties, provided that the inner structure of the cluster is resolved by
the WMAP beam. The same is seen in the Planck analysis: see Figure 3 of Planck Collaboration XI (2011).

Cool-core versus non-cool-core clusters - Motivated by this disagreement, we divided the samples into two
sub-samples: (1) cooling-flow (or cool-core) clusters and (2) non-cooling-flow (or non-cool-core) clusters. Fitting the
prediction from the UPP to the measured SZ data, we find best-fit amplitudes of 0.89± 0.15 and 0.48± 0.15 for sub-
samples 1 and 2, respectively (68% CL; see Table 12 of Komatsu et al. 2011). In other words, there is a statistically
significant difference between these two sub-samples. This is not so surprising: the X-ray data (Arnaud et al. 2010)
indicates that non-cooling-flow clusters have a significantly lower gas pressure in the core. We argued that this was
the first time the same effect has been detected in the SZ data. The Planck collaboration has confirmed this (see the
right panel of Figure 4 of Planck Collaboration V 2012).

Comparing to X-ray surveys - Combined, resolved measurements of the X-ray emission and SZ effect in a cluster
give us a clear picture of the intra-cluster medium. For example, this has allowed us to detect the difference between
cool-core and non-cool-core clusters in the SZ effect. However, such an investigation is limited to a small sample of
clusters. Many more have been detected in the ROSAT All-sky Survey. How might we best use these clusters?

In many cases, the only information available for these clusters is a redshift and an X-ray flux measured within a
certain aperture. From this, one can derive an X-ray luminosity measured within a certain physical radius, for given
cosmological parameters. We then need to use some scaling relations to relate the measured X-ray luminosity to the
size (or the mass). This presents a challenge: while using more clusters increases statistics, using scaling relations
introduces systematic errors. We tried three different scaling relations relating the X-ray luminosity, LX , to the size,
r500:22

1. r500 = 0.753 h−1 Mpc
E(z) [LX/(1044 h−2 erg s−1)]0.228 (Böhringer et al. 2007), derived from the LX -temperature

relation of Ikebe et al. (2002) and the size-temperature relation of Arnaud et al. (2005),

2. r500 = 0.717 h−1 Mpc
E1.19(z) [LX/(1044 h−2 erg s−1)]0.222 (“REXCESS” scaling relation of Melin et al. 2011), and

3. r500 = 0.745 h−1 Mpc
E1.15(z) [LX/(1044 h−2 erg s−1)]0.207 (“intrinsic” scaling relation of Melin et al. 2011).

The mass (hence r500) for the scaling relation 1 is estimated using the hydrostatic equilibrium, while that for the
scaling relations 2 and 3 is estimated using the M500-YX relation of Arnaud et al. (2007). Scaling relation 1 predicts
the largest radius (hence mass) for a given luminosity, and the scaling relation 2 predicts the smallest radius for a given
luminosity. Which relation should we use? There is no simple answer to this question, as different cluster catalogs
have different selection functions.

For the study presented in Komatsu et al. (2011), we use 499 clusters in z < 0.2 whose LX is greater than
0.45 × 1044 h−2 erg s−1. These clusters are taken from the REFLEX sample (Böhringer et al. 2004) in the southern
hemisphere, and the extended BCS sample (Ebeling et al. 1998, 2000) in the northern hemisphere. We use the above
scaling relations to relate LX to r500, and convert it to the mass, M500. We then use this mass to calculate the
predicted SZ signal from the UPP. By fitting the predicted SZ signals to the WMAP seven-year data, we find the
best-fitting amplitudes of 0.59±0.07, 0.78±0.09, and 0.69±0.08 for the scaling relations 1, 2, and 3, respectively. For
a sub-sample of high-LX clusters with LX > 4.5× 1044 h−2 erg s−1, we find 0.67± 0.09, 0.90± 0.12, and 0.84± 0.11.
Note that the quoted error bars are statistical-errors-only 68% CL. The uncertainty in the scaling relation adds more
errors to these numbers (see footnote (a) in Table 13 of Komatsu et al. 2011).

This shows how uncertain this type of analysis is: depending on scaling relations one adopts, the results change
significantly. For example, using the scaling relation 1, we find that the UPP overpredicts the SZ effect. However,
using the scaling relation 2 and the WMAP five-year data, Melin et al. (2011) find that the prediction from the UPP
agrees with the measured SZ. Finally, the Planck collaboration uses the scaling relation 2 and finds that the prediction
from the UPP agrees with the measured SZ. For the scaling relation 2, all of us agree (up to 2σ): the predicted SZ

21 Here, the UPP refers to Equation (13) of Arnaud et al. (2010). Specifically, the pressure profile with a mass scaling of M
2/3+αp

500 with
αp = 0.12, and profile parameters c500 = 1.177, α = 1.051, β = 5.4905, and γ = 0.3081.

22 Note that the relations 2 and 3 are derived originally for L500, which came from the analysis of XMM-Newton observations of the
ROSAT-detected clusters (Piffaretti et al. 2011), while we use the published values of LX from the REFLEX and the extended BCS
samples. In Komatsu et al. (2011) we reported there was weak evidence indicating that lower mass clusters tended to be under-represented
in their SZ signal. In Melin et al. (2011), this does not appear to be the case. We suspect the difference is due to the relation between LX
and L500 for low-luminosity clusters.
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from the UPP agrees with the measured SZ. However, for the other scaling relations the predicted SZ is rather low.
The Planck collaboration finds the same result (see Figure 8 of Planck Collaboration X 2011). Therefore, these results
indicate that the statistical analysis using many clusters and scaling relations is far less robust than that based on
fewer clusters with detailed X-ray data. If the statistical analysis yields an unexpected result, then one should question
the scaling relation. Thus, we do not feel there is any support for cosmological conclusions derived from stacking the
WMAP data on the positions of hundreds of X-ray clusters, none of which is individually detected in SZ. Rather, one
should conclude that a single simple X-ray based scaling law may not provide an adequately precise description of the
wide variation in clusters.

7. ACOUSTIC STRUCTURE IN THE 9-YEAR DATA

7.1. Motivation
In the standard model of cosmology based upon adiabatic scalar perturbations, temperature hot spots correspond

to potential wells (i.e., over-dense regions) at the surface of last scattering; therefore, matter flows towards these hot
spots. A crucial length scale in the CMB is the sound horizon at the epoch of decoupling, rs(z∗); the angular size
of the sound horizon sets the acoustic scale, θA ≡ rs/dA ≈ 0.◦6. At twice the acoustic scale, the flow of matter is
accelerating due to gravity, which creates a radial polarization pattern. At the acoustic scale, the flow is decelerating
due to the central photon pressure, which creates a tangential pattern (see Section 2.2.2 of Komatsu et al. 2011, and
references therein). Around cold spots (potential hills), the polarization follows the opposite pattern, with tangential
and radial polarization formed at 1.◦2 and 0.◦6, respectively.

We detected this polarization pattern in the seven-year WMAP data with a statistical significance of 8σ. The
measured pattern was fully consistent with that predicted by the standard ΛCDM model (see Section 2.4 of Komatsu
et al. 2011). Here we apply the same analysis to the nine-year data and find results that are again fully consistent
with the standard model, now with a statistical significance of 10σ.

The small-scale polarization data offer a powerful test of the standard model of cosmology. Once the cosmological
parameters are determined by the temperature and large-scale polarization data, one can predict the polarization
signal on small angular scales with no free parameters. This simple description is an important test of the standard
cosmological model.

7.2. Analysis Method
The nine-year analysis replicates that of the seven-year data (see Section 2.3 and Appendix B of Komatsu et al.

2011). We first smooth the foreground-reduced temperature maps from differencing assemblies V1 through W4 to
a common angular resolution of 0.◦5 (FWHM). We combine these maps with inverse-noise-variance weighting, and
remove the monopole from the region outside the KQ85y9 mask (Bennett et al. 2012). The locations of the local
maxima and minima are obtained using the software hotspot in the HEALPix distribution (Gorski et al. 2005).

As in the seven-year analysis, we cull the hot spot list by removing all local peaks with T < 0, and vice versa.
In the 66.34% of the sky outside the union of the KQ85y9 (temperature) mask and the P06 (polarization) mask, we
find 11,536 hot spots and 11,752 cold spots remain in the temperature map. These counts are consistent with the
expectation for a Gaussian random field drawn from the best-fit nine-year WMAP signal plus noise power spectrum.

The raw polarization maps from differencing assemblies V1 through W4 are combined using inverse-noise-variance
weighting. We do not smooth the polarization maps for this analysis. We extract a 5◦× 5◦ square region in the Stokes
I, Q, and U maps centered on each hot and cold temperature spot. We combine the extracted temperature images with
uniform weighting, while the Q and U images are combined with inverse-noise-variance weighting, excluding pixels
masked by either analysis mask. Afterwards, we remove the monopole from the co-added Q and U images. There are
625 0.◦2 pixels in each polarization image, which sets the number of degrees of freedom in the χ2 analysis.

To make contact with the standard model prediction, we work in a rotated polarization basis, Qr and Ur, introduced
by Kamionkowski et al. (1997). These parameters are related to Q and U by

Qr(θ) = −Q(θ) cos 2φ− U(θ) sin 2φ, (23)
Ur(θ) = Q(θ) sin 2φ− U(θ) cos 2φ, (24)

where θ = (θ cos φ, θ sinφ) is a position vector whose origin is the location of the temperature extremum; see Figure 1
of Komatsu et al. (2011). These Stokes parameters offer a simple test of the standard model, which predicts Ur = 0
everywhere, and Qr(θ) alternating between positive (radial polarization) and negative (tangential polarization) values.

7.3. Results
Figure 12 shows the co-added T and Qr images from the nine-year data. We clearly see the alternating radial and

tangential polarization pattern around the average hot spot, and vice-versa around the average cold spot. To test the
agreement between data and theory, we fit the Qr maps to their predicted patterns, and let the amplitude be a free
parameter. For the hot-spot Qr, we find a best-fit amplitude of 0.89 ± 0.14 (68% CL) with ∆χ2 = −41.3 relative
to zero amplitude. For the cold-spot Qr, we find 1.06 ± 0.13 (68% CL) with ∆χ2 = −61.4. The combined best-fit
amplitude is 0.973 ± 0.096 (68% CL). The data are fully consistent with the standard ΛCDM prediction, and the
combined statistical significance of the detection is 10σ, compared to 8σ for the seven-year data.

The co-added Ur maps are consistent with zero. We fit the measured Ur maps to the predicted Qr patterns and find
best-fit amplitudes of 0.02± 0.14 and 0.04± 0.13 (68% CL) around the average hot and cold spots, respectively.
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Fig. 12.— Co-added maps of temperature, T , and polarization, Qr, smoothed to a common resolution of 0.◦5, and stacked by the location
of temperature extrema. (The polarization maps were not smoothed for the analysis, however.) Top-left: the average temperature hot
spot. Top-right: the rotated polarization map, Qr, stacked around temperature hot spots. Bottom-left: the average temperature cold spot.
Bottom-right: the rotated polarization map, Qr, stacked around temperature cold spots. The polarization images are color-coded so that
the red (Qr > 0) shows the radial polarization pattern, while blue (Qr < 0) shows the tangential polarization pattern. The lines indicate
polarization direction. These images are a striking illustration of BAO in the early plasma, and phase coherence in their initial conditions.

8. CONCLUSION

We have used the final, nine-year WMAP temperature and polarization data (Bennett et al. 2012) in conjunction
with high-l CMB power spectrum data (Das et al. 2011; Keisler et al. 2011; Reichardt et al. 2012a), BAO data (Beutler
et al. 2011; Padmanabhan et al. 2012; Anderson et al. 2012; Blake et al. 2012), and a new H0 measurement (Riess et al.
2011) to place stringent constraints on the six parameters of the minimal ΛCDM model, and on parameters beyond the
minimal set. The six-parameter model continues to describe all the data remarkably well, and we find no convincing
evidence for deviations from this model: the geometry of the observable universe is flat and dark energy is consistent
with a cosmological constant. The amplitude of matter fluctuations derived from WMAP data alone, assuming the
minimal model, σ8 = 0.821± 0.023 (68% CL), is consistent with all the existing data on matter fluctuations, including
cluster abundances, peculiar velocities, and gravitational lensing. The combined (WMAP+eCMB+BAO+H0) data
set gives σ8 = 0.820+0.013

−0.014 (68% CL).
The basic predictions of single-field inflation models for properties of primordial curvature perturbations are well

supported by the data: the temperature fluctuations, which linearly trace primordial curvature perturbations, are
Gaussian (Bennett et al. 2012) and adiabatic; they exhibit a slight power-law scale dependence, and the limits on
primordial gravitational waves are consistent with many inflation models, including one of the oldest, proposed by
Starobinsky (1980).

We find strong support for standard Big Bang nucleosynthesis from the joint constraint on the effective number of rel-
ativistic species and the primordial helium abundance, which yields Neff = 3.55+0.49

−0.48 and YHe = 0.278+0.034
−0.032 (68% CL).

The total mass of neutrinos is restricted to
∑

mν < 0.44 eV (95% CL) without relying on information about the
growth of structure.

We compared our seven-year measurements of the SZ effect, presented in Komatsu et al. (2011), with the recent
Planck measurements, finding that our results have been confirmed by Planck with striking precision.

The improved polarization data around temperature extrema, now detected at 10σ, are in an excellent agreement
with the prediction of the standard model based on adiabatic scalar fluctuations, providing a striking illustration
of our physical understanding of the formation of acoustic waves in the early universe. No evidence for rotation of
the polarization plane, e.g., by cosmological birefringence, is found: the nine-year WMAP bound is ∆α = −0.◦36 ±
1.◦24 (stat.)± 1.◦5 (syst.) (68% CL). The error is now dominated by systematic uncertainty.
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The nine-year WMAP data have reduced the allowable volume of the six-dimensional ΛCDM parameter space by
a factor of 68,000 relative to pre-WMAP CMB measurements. When combined with the high-l CMB, BAO, and H0

data the volume is reduced by an additional factor of 27. The maximum likelihood values of the ΛCDM parameters are
given in Table 2 and the mean and associated 68% CL error bars are given in Table 4. These results and those presented
in the companion paper (Bennett et al. 2012) complete the WMAP Team’s formal analysis and interpretation of the
WMAP data.
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APPENDIX

PREDICTIONS OF STAROBINSKY’S R2 INFLATION

Primordial tilt
As an example of a model that is consistent with the WMAP nine-year data, we examine the predictions of Starobin-

sky’s R2 inflation model. In 1980, Starobinsky (1980) showed that one-loop quantum corrections to the Einstein-Hilbert
action, which generate fourth-order derivative terms of O(R2), where R is the Ricci scalar, lead to a de Sitter-type
accelerated expansion of the universe. Starobinsky’s motivation was not to solve the flatness and homogeneity prob-
lems of the standard Big Bang model (this was later done by Guth 1981), but to see whether one-loop corrections
eliminate the classical singularity at the beginning of the universe. He was attempting to construct a cosmological
model beginning from an initial de Sitter stage (not necessarily expanding) and ending in a radiation-dominated stage
with a Friedmann-Robertson-Walker metric, with a mechanism for the graceful exit from inflation and the subsequent
reheating phase.

Starobinsky’s work motivated Mukhanov and Chibisov in 1981 to consider quantum fluctuations in this model
(Mukhanov & Chibisov 1981). They made the remarkable observation that quantum fluctuations generated during
the de Sitter expansion are approximately scale invariant with a logarithmic dependence on wave number, and “could
have lead to formation of galaxies and galactic clusters” (quoted from the abstract of their paper). In current notation,
Mukhanov & Chibisov (1981) show that ∆R(k) ∝

(
1 + 1

2 ln aH
k

)
[see their Equation (9)], where H is the Hubble rate

during inflation and k is the comoving wave number. In the super-horizon limit, k � aH, the primordial tilt observed
in the wave number range accessible to WMAP, kWMAP, is given by

ns − 1 =
d ln∆2

R(k)
d ln k

∣∣∣∣
k=kWMAP

= − 2
ln kWMAP

aH

= − 2
N

, (A1)

where N is the number of inflationary e-folds between the epoch when kWMAP left the horizon and the end of inflation.
With N = 50, for example, one obtains ns = 0.96, which is in agreement with our measurement.

Among the one-loop correction terms considered by Starobinsky (1980), one particular term proportional to R2 is
found to be sufficient for driving inflation and creating curvature perturbations with the above spectrum, as the other
terms vanish when the metric is conformally flat (e.g., a flat Friedmann-Robertson-Walker metric). Then, one can
obtain this result from the standard slow-roll calculation. As first shown by Whitt (1984), an action containing R and
R2 is equivalent to an action containing R and a scalar field. Let us start with

I =
1
2

∫
d4x

√
−g

(
R + αR2

)
. (A2)

Here, we have set 8πG = 1. By performing the conformal transformation, gµν → ĝµν = (1+2αR)gµν , and introducing
a canonically normalized scalar field, Ψ =

√
3/2 ln(1 + 2αR), Maeda (1988) finds that this system is described by a
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scalar field Ψ with a potential given by

V (Ψ) =
1
8α

(
1− e−

√
2/3Ψ

)2

, (A3)

which is quite flat for a large Ψ (also see Barrow & Cotsakis 1988; Salopek et al. 1989).
Once V (Ψ) is given, it is straightforward to compute the slow-roll parameters:

ε ≡ 1
2

(
V ′

V

)2

, η ≡ V ′′

V
, (A4)

where the primes denote derivatives with respect to Ψ. The number of e-folds of inflation between the end of inflation,
te, and the epoch at which the observed perturbation left the horizon, t, is given, to the leading order in ε, by

N ≡
∫ te

t

Hdt =
∫ Ψ

Ψe

dΨ√
2ε

. (A5)

For the form of V (Ψ) given above, one finds, for a large value of Ψ � Ψe,

ε =
4
3
e−2
√

2/3Ψ, η = −4
3
e−
√

2/3Ψ, N =
3
4
e
√

2/3Ψ. (A6)

Therefore, the slow-roll parameters are given by N as

ε =
3

4N2
, η = − 1

N
, (A7)

i.e., ε � |η|.
The primordial tilt is given by the slow-roll parameters as (Liddle & Lyth 2000)

ns − 1 = −6ε + 2η ' − 2
N

, (A8)

which agrees with the original result obtained by Mukhanov & Chibisov (1981).

Tensor-to-scalar ratio
Prior to the invention of his inflationary model, Starobinsky (1979) calculated the energy spectrum of long-wavelength

gravitational waves produced during the de Sitter expansion, assuming the Einstein-Hilbert action (also see Grishchuk
1975). Such long-wavelength gravitational waves induce temperature anisotropy in the CMB (Rubakov et al. 1982;
Fabbri & Pollock 1983; Abbott & Wise 1984; Starobinsky 1985).

Starobinsky (1983) calculated the energy spectrum of gravitational waves from his own R2 inflation (also see Mijić
et al. 1986). Instead of presenting their formulae, let us follow the standard slow-roll calculation. The tensor-to-scalar
ratio, r, is given by the slow-roll parameter as r = 16ε (Liddle & Lyth 2000). Using the relation between ε and N
obtained in the previous subsection, one finds

r =
12
N2

. (A9)

Therefore, while the R2 inflation predicts a tilted power spectrum, the predicted tensor-to-scalar ratio is much smaller
than O(1− ns) = O(1/N) as it is of order O(1/N2).

Predictions of non-minimally-coupled inflation
These predictions, ns − 1 = −2/N and r = 12/N2, are exactly the same as those of an inflation model based on a

scalar field non-minimally coupled to the Ricci scalar (Spokoiny 1984; Accetta et al. 1985; Futamase & Maeda 1989;
Salopek et al. 1989; Fakir & Unruh 1990):

I =
1
2

∫
d4x

√
−g

(
1 + ξφ2

)
R, (A10)

where the coupling constant, ξ, is equal to −1/6 for the conformal coupling. For inflation occurring in a large-field
region, ξφ2 � 1, with a scalar potential of V (φ) ∝ φ4, the tilt is given by ns− 1 = −2/N (Salopek 1992; Kaiser 1995),
and the tensor-to-scalar ratio is given by (see Equation (5.1) of Komatsu & Futamase 1999)

r =
12
N2

1 + 6ξ

6ξ
, (A11)

which becomes r → 12/N2 for ξ � 1 (also see Hwang & Noh 1998).
This model has attracted renewed attention recently since Bezrukov & Shaposhnikov (2008) showed that the standard

model Higgs field can drive inflation if the Higgs field is non-minimally coupled to the Ricci scalar with ξ � 1. The
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predictions of the original Higgs inflation for ns and r are therefore also ns−1 = −2/N and r = 12/N2 (e.g., Bezrukov
et al. 2009).
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