XMT BOF SC09 XMT Status And Roadmap

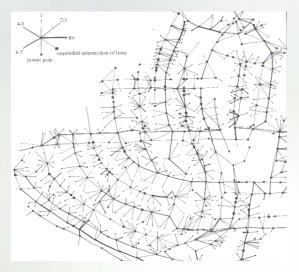
Shoaib Mufti Director Knowledge Management

XMT BOF SC09

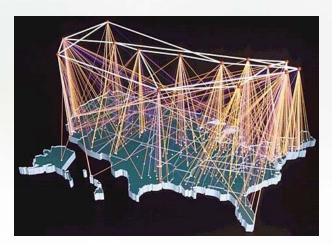
Outline

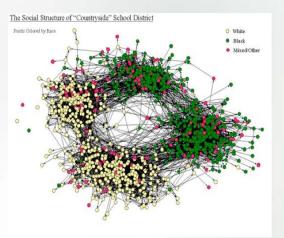
XMT Application and Overview
XMT Status and Roadmap
Knowledge Management Practice

Knowledge Management and Discovery

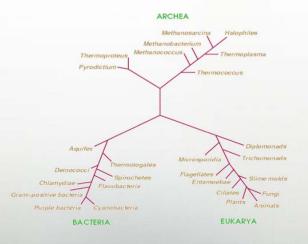

- Growing size of on-line content, new frontiers in science, and national security needs are creating applications that require processing of a massive amount of unstructured data
- These problems require finding useful information and gathering knowledge from massive amount of seemingly unrelated data
 - "Finding needle in a haystack" problems
 - "Connecting the dots" problems

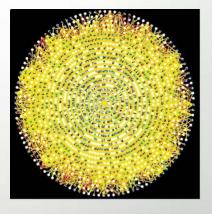
Examples:


- Intelligence
 knowledge from massive homeland security data, cyber security by real time intrusion detection, tracking suspicious activities in billions of financial transactions
- > National Defense -> battle field analysis
- ► Energy → electric power grid failure analysis, energy conservation by rerouting electric power in an electric grid
- Health care
 disease spread, detection and prevention of epidemics/pandemics (e.g. Avian flu) by doing social networking analysis


Power Distribution Networks

Internet backbone


Social Networks



Graphs are everywhere!

Ground Transportation

Protein-interaction networks

Tree of Life

Cray Inc. Proprietary

How do we process these Graphs?

Challenges:

- Runtime is dominated by latency
 - Random accesses to global address space
 - Perhaps many at once
- Access pattern is data dependent
 - Prefetching unlikely to help
 - Usually only want small part of cache line
- Potentially abysmal locality at all levels of memory hierarchy

Desired Features:

- Low latency / high bandwidth
 - For small messages!
- Light-weight synchronization mechanism
- No dependence on cache for performance
- Global address space
 - No graph partitioning required
 - No local/global numbering conversions

One machine with these properties is the Cray XMT

Cray XMT Overview

Cray XMT

* Background

With government support, Cray developed the eXtreme MultiThreading (XMT) system and technology to solve unstructured data analysis problems

Characteristics

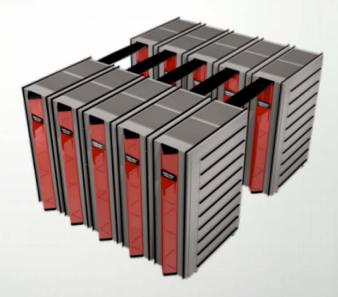
- Extreme multithreading
 - Architecture supports 8000 processors
 - 128 hardware threads per processor
 - Practically unlimited virtual threads
- Very large shared memory
 - Architecture supports 128TB of memory
- Very low power
 - Less than 30 watt processors
- Ease of use
 - Compiler and Runtime makes parallel programming easy
- Superior price/performance for Data Intensive Computing
 - E.g. Graph Analytics, "Connecting the Dots"

Cray XMT Characteristics

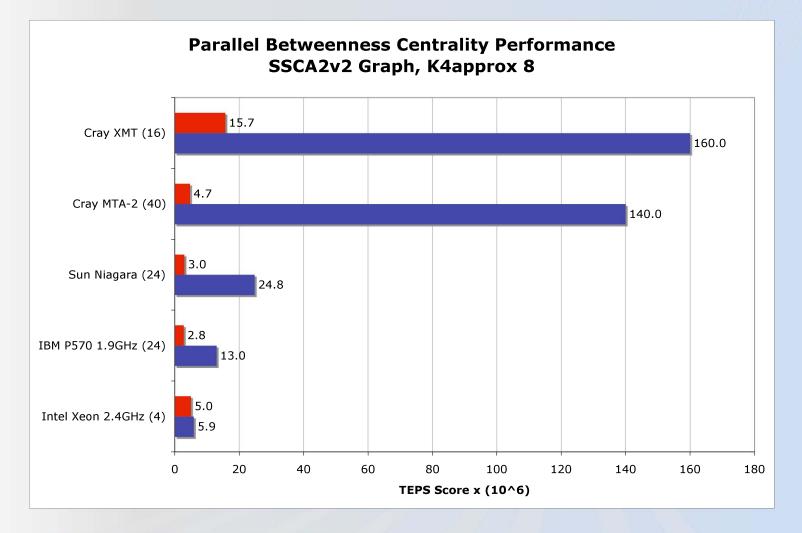
Remote memory requests do not stall processor

- Each processor has hardware support for 128 streams of unlimited threads
- No cache or local memory
- Context switch on every clock cycle
- Multiple outstanding loads
- Other streams work while your request gets fulfilled

Light-weight, word-level synchronization


Minimizes access conflicts

Hashed Global Shared Memory


Minimizes hotspots

Hardware bit manipulation functions

- Bit matrix multiply
- Shift left/right

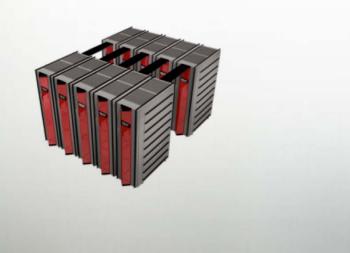
SSCA2 TEPS Performance Comparison

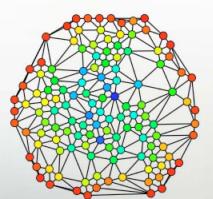
Single Processor All F

All Processors

courtesy of David Bader, GA Tech

Betweenness Centrality


***** Application Significance:


 Betweenness is a centrality measure of a vertex within a graph. Vertices that occur on many shortest paths between other vertices have higher betweenness than those that do not.

*** XMT vs. Opteron Cluster:**

✓ 64 processor Cray XMT vs. 64 processor Opteron Cluster

*** XMT** performed **350** times better than an Opteron Cluster

Knowledge Management

Cray XMT Status and Roadmap

First 16P XMT1 was shipped in 2Q 2008

Available today with 512P and 4TB memory!

Multiple XMT1 Systems at Customer Sites

Five customer sites with eight installations

XMT beginner and advanced training courses available

SC09 Activities

> XMT BOF, DEMO PNNL Booth, Talk LexisNexis Booth (Sandia, Lexis, Cray)

Next generation XMT development underway

- Increased Memory Capacity by more than four times
- Improved Reliability, Availability, Serviceability (RAS)
- Reduced Footprint per TB memory Power and Space
- Improved Price/Performance
- System and User Software Improvements

Knowledge Management

Community Momentum

Pacific Northwest National Laboratory (CASS-MT)

- Center for Adaptive Supercomputing Software Multithreading Architectures <u>http://cass-mt.pnl.gov/default.aspx</u>
- Research Areas
 - Algorithms, System Software and Applications Kernels
 - Social Network Analysis
 - Statistical Textual Document Analysis
 - Dynamic Network Analysis
 - Sparse Graph Network-of-Network Algorithms
 - Contingency Analysis
 - Applications/Solutions
 - E.g. Electric Power Grid

Sandia National Laboratory

- Research Areas
 - Algorithms and Applications Kernels
 - Applications/Solutions
 - E.g. Informatics

* National Science Foundation

Univ. of Notre Dame, Univ. of Delaware, UC Santa Barbara, CalTech, Georgia Tech, UC Berkeley, SNL

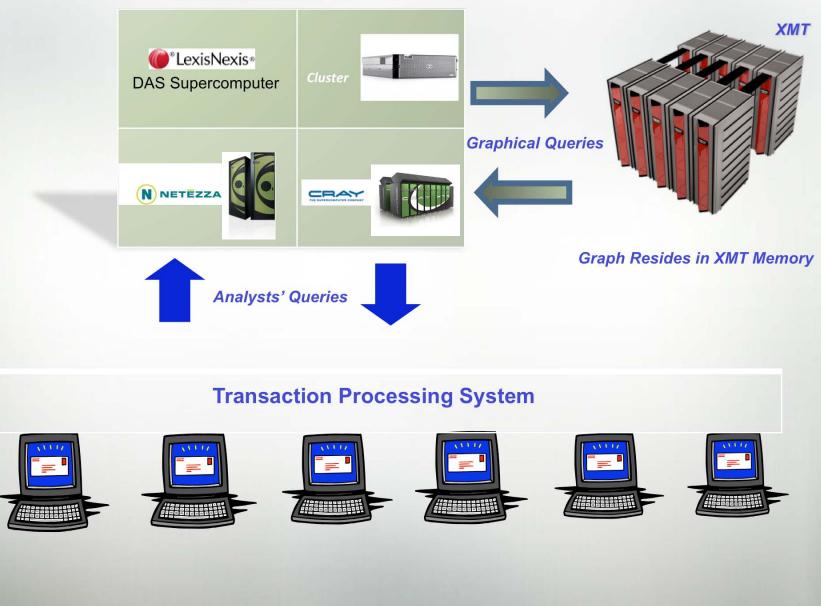
Cray Inc. Proprietary

Knowledge Management Practice

- Cray created the Knowledge Management Practice as a part of Cray Custom Engineering initiative in 2009 to build solutions to meet the growing demand of large scale data analysis and mining
- Builds an ecosystem around the Cray XMT and other products
- Builds business for Cray's informatics technology

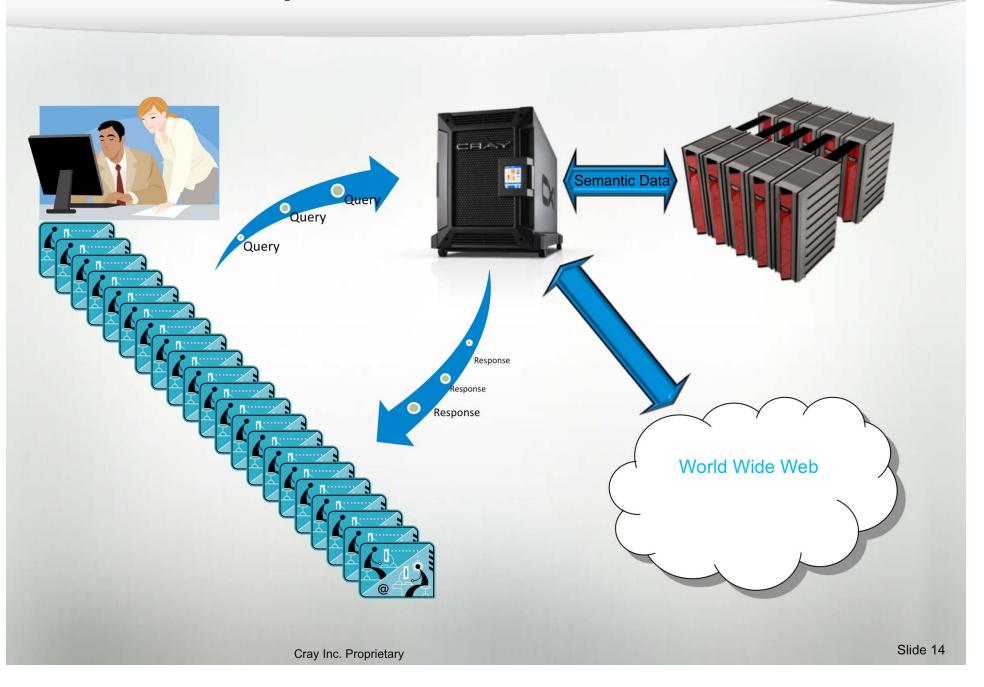
Go beyond offering "just hardware"

- Develop applications and solutions with partnerships
- Expertise, Training, Consulting, Application development


Leverages Cray's vast experience

- Supercomputing
- Custom engineering

Cray Inc. Proprietary



KM Solution Architecture (Example)

Interactive Analytics

CRAY

Acknowledgements

- David Bader -- Georgia Tech
- Kamesh Madduri -- Lawrence Berkeley National Laboratory
- John Feo, Daniel Chavarria PNNL
- Jon Berry, Bruce Hendrickson Sandia National Labs

