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Ordinary C code–The compiler is reassured that P, T & D

do not overlap:automatically converts rectangular loop into

wavefronted loop.
| #pragma mta noalias *P, *T, *D

| for (i=1; i <=m; i++) {
| int j;

7 P:e | int myPi=P[i];

| for(j=1; j <= n ; j++){
| int v, h, d, m1, m2, p;

9 -P1:w | v= D[i-1][j]+1;

| p= (myPi!=T[j]);

9 -P1:w | ...

| m2 = MIN( m1,h);

9 P-:w | D[i][j] = m2;

9 SP1:w +

| }
| }
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Sequence alignment on the Cray XMT & SGI Altix

Concurrency & Computation

www3.interscience.wiley.com/journal/

122580907/abstract



Massively
XMT:

Multithreaded
Computing

Graph Theoretic Model for Virus

Reassortment
Alignment

Comparison

Model
Reassortment
Network

Shared Multilevel
Parallel Queues

4 / 24

■ Evolution over τ stages or seasons modeled
with a layered or multipartite graph.

■ Viruses = nodes

■ Reassortment events = nodes

■ Mutations/reassortment choices = edges

■ Weights on edges represent edit distances

IEEE Trans. Computational Biology & Bioinformatics

doi.ieeecomputersociety.org/10.1109/TCBB.2008.73
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Path in Reassortment Network corresponds to sequences of
mutations and reassortments that transform one virus into
another.
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■ The use of parallel shared queues is essential
for the correct execution of many classes of
programs in parallel computers.

■ Control of concurrent access to shared queues
is possible with FETCH AND ADD or similar
instructions. Unfortunately these instructions
generate severe overhead as the number of
threads increases.

■ A Shared Multilevel Parallel Queue (SMPQ)
mechanism has been developed that greatly
reduces this overhead.
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■ While the FETCH AND ADD hardware will permit logically correct
operation of shared queues, most parallel computer systems have a
limited number of hardware units capable of carrying it out and the
performance of queuing operations drops dramatically as the
number of active threads increases.

■ Consequently, the performance of many algorithms that require
frequent use of the FETCH AND ADD operation is very limited
and performance scales very poorly as the number of processors
increases.

■ At the same time, it is impossible to obtain correct implementations
of many important parallel algorithms without using the
FETCH AND ADD operation.
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■ Breadth First Search (BFS) will be used as a motivating
example in the exposition of the SMPQ concept.

■ BFS is a widely used operation at the heart of many
graph algorithms and its efficient parallel
implementation shall improve the performance of many
existing and proposed parallel graph codes.

■ However SMPQs are applicable directly, or with minor
modification, to a much wider range of parallel
algorithms.
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E

r r

q

τ

r

τ

q

r r

q q q

r r

q

r

q

τ

Q Q
EW

W
RR

q1

1

1

2

2

2

t

t

t

t+1

t+1

t+2

t+2

m

m

m+1

m+1

n

n



E

r

q

r

τ

qq

r

q

τ

q

r r

τ

q

r

qq

rr

Q Q
EW

W
RR

1

1

1

2

2

2

t

t

t

m+1

m+1

n

n

t+1

t+1

m

m

t+2

t+2

One stage of the BFS is completed, all input queues qi (originally in QW) have

been emptied and put in QE. All output queues have been filled (as much as
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■ The shared multilevel parallel queuing mechanism described above
has been motivated and presented in the context of Breadth First
Search (BFS), where the required capacity of the queue is known a
priori and is bounded by the total number of nodes in the graph.

■ It is equally applicable to other computational problems where a
bound on the total queue size is known. However, there may be
cases where a bound on the total queue size is not known
beforehand.

■ In such cases it is straightforward to extend the approach so that
when the system sees the total capacity approach exhaustion, it
allocates additional queues (in dynamic memory) and inserts them
appropriately in the data structure. The overhead of carrying out
these allocations will be hidden by the activity of the active threads,
of which there may be thousands or even millions in a massively
multithreaded system.
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