PNNL-SA-60533

Geophysical Characterization: Discussion Points

¹Andy Ward and ²Roelof Versteeg ¹Pacific Northwest National Laboratory, Richland, WA ²Idaho National Laboratory, Idaho Falls, ID

August 29, 2007

Pacific Northwest National Laboratory U.S. Department of Energy

IFC Well Field

Revised (01.21.08) Layout of Hanford 300 Area IFC Well Array

DEPARTMENT OF ENERGY

Actific Northwest ational Laboratory perced by Estalla for the J.S. Department of Frange

Instrumentation

5

Cffice of Science

What we will get- Example from C5708

- Neutron "moisture"
 - 50 mCi Am-Be source
 - Zone 15 cm (wet), 70 cm (dry)
 - Vadose zone only
 - Typical $\Delta z \sim 3$ inches
 - Calibrated for 6 and 8-in steel casing- Neutron counts

Physically-based PTM- Specific Surface Area

8

What we will get- Example from C5708

Pacific Northwest National Laboratory Operated by Eatella for the 9 U.S. Department of Frange

Mineralogy/Chemistry- C5708

Radioactivity of Soils and Rocks

Rock Type	K (%)	U (10 ⁻⁴ %)	Th (10 ⁻⁴ %)	Th/U
Shale and Clay	3.2	4.0	11.0	2.8
Sandstone	1.2	3.0	10.0	3.3
Limestone	0.3	1.4	1.8	1.3
Evaporites	0.1	0.1	0.4	4.0

Soil Type	K (%)	Th (10 ⁻⁴ %)
Light and Medium sod-podzolic	1.2	3.3
Light-grey and grey forest Podzolized	1.6	4.8
Medium-humus chernozem	1.7	6.0
Dark chestnut soil	1.8	7.0

Pacific Northwest National Laboratory Operated by Usually for the 11 U.S. Department of Every

Surface Geophysics

- Spatial changes
 - Lateral/horizontal correlation lengths and transition probabilities of different facies
- Temporal changes
 - Time lapse for monitoring processes
- Geophysical modalities to date
 - Ground penetrating radar
 - Resistivity
 - induced polarization
 - Magnetometer
 - EMI (EM31, EM34)
- Planned
 - Feasibility of Reflection Seismic (KGS)

Ground Penetrating Radar

- GPR reflection surveys
 - 50, 100, 300 MHz
- Spatial correlation structure
 - radar reflections, radar stack velocity
- Transects parallel and perpendicular to river
 - Horizontal spacing of 5 m
 - 30 cm acquisition intervals
- GPR Penetration limited to ~ 5 m even at 50 MHz (~ depth of pond backfill after excavation
- Crosshole radar
 - Monitoring infiltration tests

Resistivity and Induced Polarization

Field IP Response

Pacific Northwest National Laboratory Operated by Extelle for the 15 U.S. Department of Frengy

Discussion

- Spatial Changes
 - Surface
 - Borehole
 - Crosshole
- Temporal Changes
 - Surface
 - Borehole
 - Crosshole
- Laboratory- Property Transfer Models
 - What can we measure to help improve conceptualization and model parameterization

Pacific Northwest National Laboratory Operated by Extelle for the 1 U.S. Department of Energy