Data management for the 300-Area IFC

Tim Johnson, Roelof Versteeg, Yuxin Wu, Sera White and Carson Fenimore

Idaho National Laboratory

Data Management Team members

- Roelof Versteeg (INL monitoring group lead)
- Tim Johnson (postdoctoral associate, hydrogeophysical modeling and inversion)
- Yuxin Wu (postdoctoral associate, experimental geophysics (linking geophysics with geochemical processes))
- Sera White IT lead
- Carson Fenimore IT support, hardware/software integration

Outline

- Background
- Data management objective for the 300 Area IFC
- Data management Implementation
 - Overview of Data management elements and general INL approach
 - 300 Area IFC implementation
- Next steps

Background

- Data management motivation
 - Data driven motivation
 - Result driven motivation
- Formal definition of data management
- Components of data management

The typical single PI research effort

- Data in
 - Original field files (dumps from dataloggers)
 - Notebooks
 - Electronic format (EDD from laboratories, pdf reports, excel files)
- Data used for single objective (project, publication)
- Applications used for data processing are local and "owned" by PI
- Results of data (graphs, summary conclusions, data synthesis) possibly used multiple times
- After project, data storage generally unorganized
 - Folder on harddisk with all files
 - burn to cd/dvd
- Data distribution typically as flat data files or reports
- No institutional memory

The multi PI effort

- Each PI "owns" his/her own data
- Each PI maintains his own data
- Each PI has his/her own applications
- Sharing primarily at result level
- Data reuse requires reinventing the wheel
- Data confidence and progeny unclear outside of PI owner

Result generation

- Result generation typically requires multiple, local, disassociated software applications
 - Excel
 - Modflow
 - Stomp
 - Mineql
 - Surfer
 - Matlab
 -
- Processing steps are generally not stored/documented
- Results are often
 - Not auditable
 - Not transparent
 - Not reproducible

Consequences

- Data reuse is effectively impossible
- Collaboration efforts are tenuous
- Project management complicated
- Scientific value is diminished
- → motivates data management

Data management definition

- Data management comprises all the disciplines related to managing data as a valuable resource.
- (one) definition (wikipedia) is Data Resource Management is the development and execution of architectures, policies, practices and procedures that properly manage the full data lifecycle needs of an enterprise

Data management components

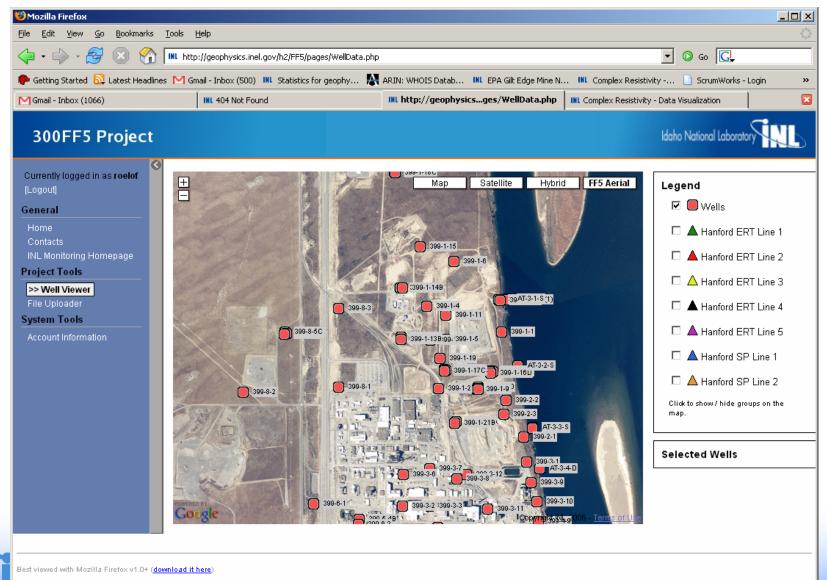
- Includes
 - Data modeling (design of a relational database model which fits the data)
 - Database administration
 - Data warehousing
 - Data mining
 - Data qa/qc
 - Data security
 - Meta data management

IFC data management objectives

- 1 Capture all data and metadata associated with the IFC effort, and provide data management function (QA/QC, warehousing, security)
- 2 Provide a comprehensive, web accessible environment which provides IFC and non IFC scientists
 - Access to IFC related data and results
 - Access to the computational tools used to generate these results (including visualization tools)

Note - 1

- IFC effort includes traditional data management component, but expands on it by including
 - Data capture effort
 - Web based Data access
 - Web based Tool access
- Approach driven by the fact that data is only part of the issue other part is use of tools and data to generate information
- Novel IT development allows for implementation of this approach - parallels that by other US institutions (NOAA, NASA), as well as several international groups in Europe



Note - 2

- Approach uses and implements existing tools and applications
- Approach uses well defined national and international standards
- Approach has been refined over last several years
- Approach provides a natural interface to GIS (Geographic Information System) technologies.

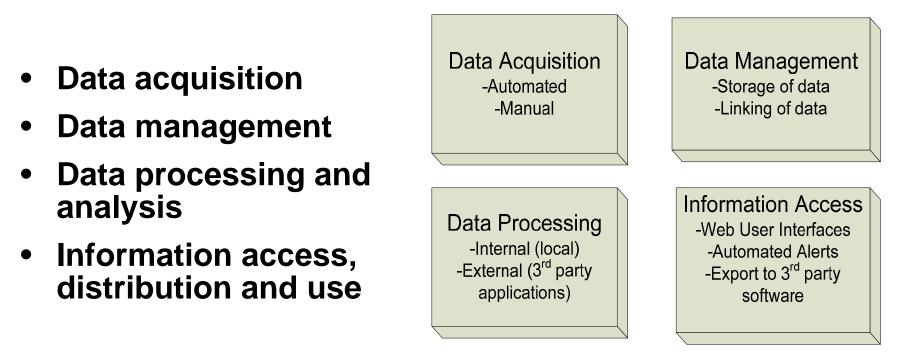
Example 300 Area: use of Google Maps to show wells

Copyright © 2006 INEEL Monitoring Group All trademarks and copyrights on this page are owned by their respective owners. This page was generated by PHP and served by Apache

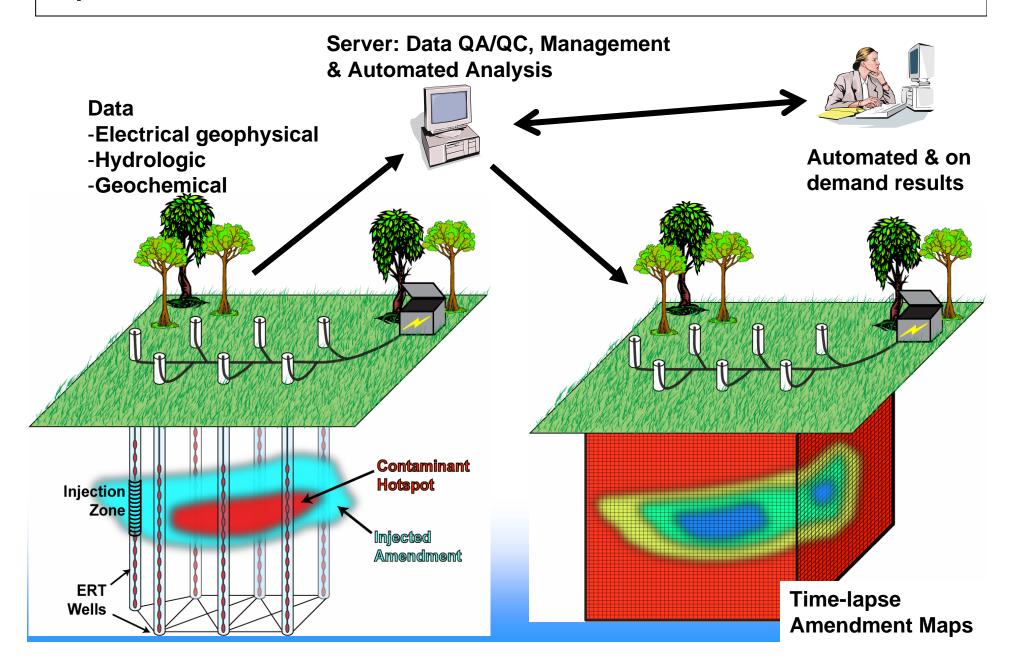
▲ Done

Data management Implementation

- Overview of Data management elements and general INL approach
- 300 Area IFC implementation



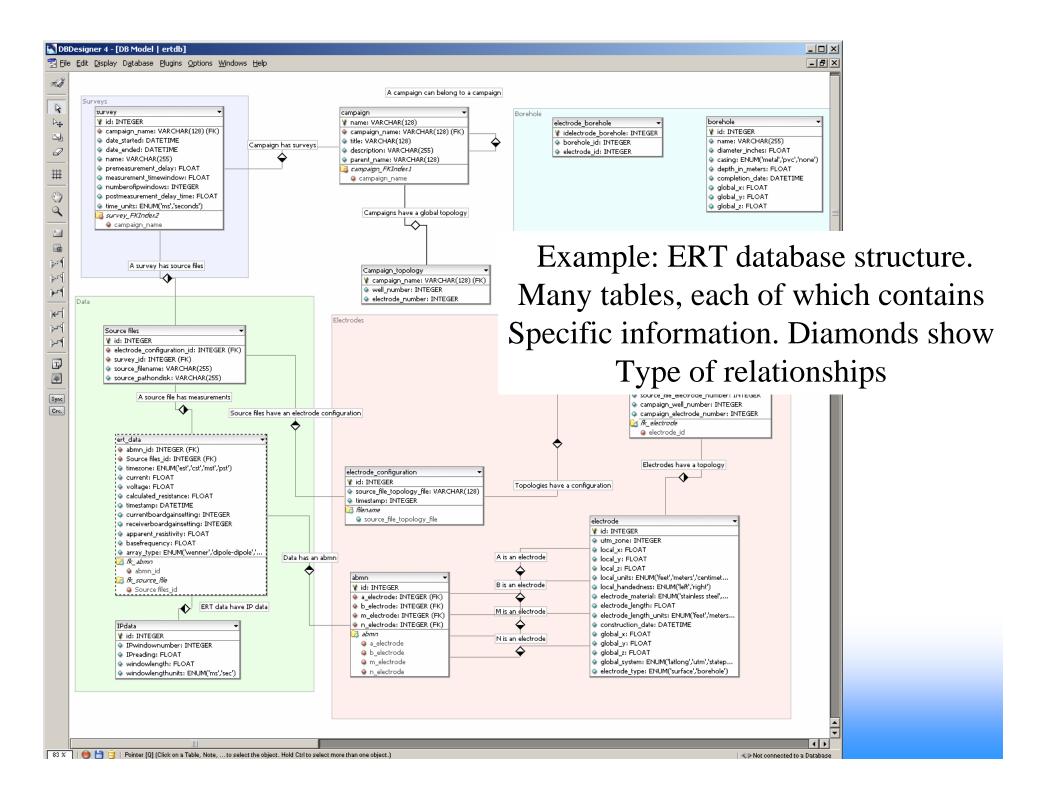
IT components


- Involves large number of acronyms, concepts and tools (XML, BPEL, Workflows, UDDI, webservices, relational databases, data normalization, C++, Javascript, Server/Client relations, transactions,...)
- Exact understanding not required understanding of general concepts is beneficial

IFC data management effort: four integrated components

Example: possible setup and data flow for 300 area amendment injection experiment

Effective Data management


- Requires
 - Well defined plan for capture for data (need to know what will be collected, by whom, when)
 - Use of relational databases for data storage
 - Collection of appropriate metadata
 - Plans in place BEFORE data is collected (from hard experience)

Relational databases

- Core part is relational model, and use of schemas
 - Schema: structure of how data is arranged
 - The fundamental assumption of the relational model is that all <u>data</u> are represented as <u>mathematical *n*-ary relations</u> (1 to 1, 1 to many, many to many)
- The relational model of data permits the database designer to create a consistent, logical representation of <u>information</u>.
- Includes a process of <u>database normalization</u> whereby a design with certain desirable properties can be selected from a set of logically equivalent alternatives.
- Data access and operation are handled by the <u>DBMS</u> engine, and are not reflected in the logical model.

Relational Databases : An Example

- Structure consists of linked tables
- Simple model would have two tables: well table, and sample table
- Well location would have
 - Well ID (unique number)
 - Well information (diameter, casing, possible screening depths)
 - Location (both Lat/Long and Washington State)
 - Construction information (completion date, driller id) [Note: this would link to a "driller table")]
- Sample table would have wellid, and sample information (sample date, sampling results)
- One well can have many samples
- One sample only collected in one well
- One to many relationship

Advantages of relational databases

- Only store information in one location
- All information is linked

Main Database task

- Database modeling: define an appropriate structure and relationship between all data
- Requires an in depth understanding of data and relationships
- Should be as comprehensive as possible (it is hard to go back and gather data later on (for instance sensor calibration information, environmental conditions, sensor number, ...)

Automated data acquisition

- Automated all data which does not involve manual intervention at any place during the acquisition process
 - Will include most geophysical data, pressure sensors, in well chemistry sensors, weather stations and so on.
 - Data is stored in well defined, fixed formats
 - Data can be transmitted automatically to server, or retrieved from data logger by dialup

Manual data acquisition

- Typically will include soil and water samples, and chemical, biological and soil analysis
- Requires combination of electronic sampling information (e.g. sampling plan and procedures) with sample number, and analytical results for good management
- Protocols for data scheduling and data management exist

Data processing

- Collecting data is easy (and will get easier and cheaper)
- Managing and distributing data is harder
- Allowing other people to make effective use of your data is really hard
- Making use of OPD (Other People's Data) will have to become a way of life (requires confidence in data and collectors)
- → <u>Core challenge in data processing</u>: How do we effectively process data and generate information – especially for distributed systems?

Core challenge: information generation

- Information generation from earth science data currently done through the sequential use of disjoint diverse applications by technical experts
- Information generation is typically a one way street– generating different views requires substantial manual efforts
- Example: generation of predictive model for typical DOE site is a customized, artisanal effort: documenting these models is hard because each model is "unique"

Consequences

- Hard and expensive for diverse users to generate new but similar results
- Poorly/Not auditable
- Little/No transparency
- No reproducibility

Workflows to the rescue!

Workflow definition

- The automation of a business process, in whole or part, during which documents, information or tasks are passed from one participant to another for action, according to a set of procedural rules
- Scientific workflows: "The automation of scientific data analysis according to a set of procedural rules".
- Workflow concept historically well known to most scientists, but typically within application (e.g. Excel macros, Seismic Unix and Promax scripts, Matlab .m files)

Workflow examples in practice

- Timesheets
- Walmart ordering process
- Web purchases
-
- Key is
 - The existence of a process which can be formalized
 - Automation of this process

Scientific Workflows

- Historically developed within specific desktop application or specific computational environment (e.g. PNL Frames)
- Works well, but
 - Hard to share workflows (requires similar computational environment)
 - Hard to extend and distribute
 - Scientific workflows typically designed for high skill level users (different from business workflows)
- Following business workflows, evolving to workflows on the web (using webservices)

Web service

- Web service: a software component that is described via WSDL (Web Service Definition Language) and is capable of being accessed via standard network protocols such as but not limited to SOAP over HTTP
- Laymen terms: a web service is a self describing piece of software (which performs a specific action on well defined inputs and outputs) which can be invoked over the web using a standard calling protocol
- A web service has specific functionality. Underlying implementation is shielded from the user.
- A web service can be thought of as a subroutine or a function in traditional programming languages

Specifics

- A web service is associated with a specific URI (Uniform Resource Identifier similar to URL)
- Web service takes and returns arguments in standard formats (typically XML)
- A web service resides on a server
- A web service operates using well defined standards and protocols

Web Service Protocol Stack

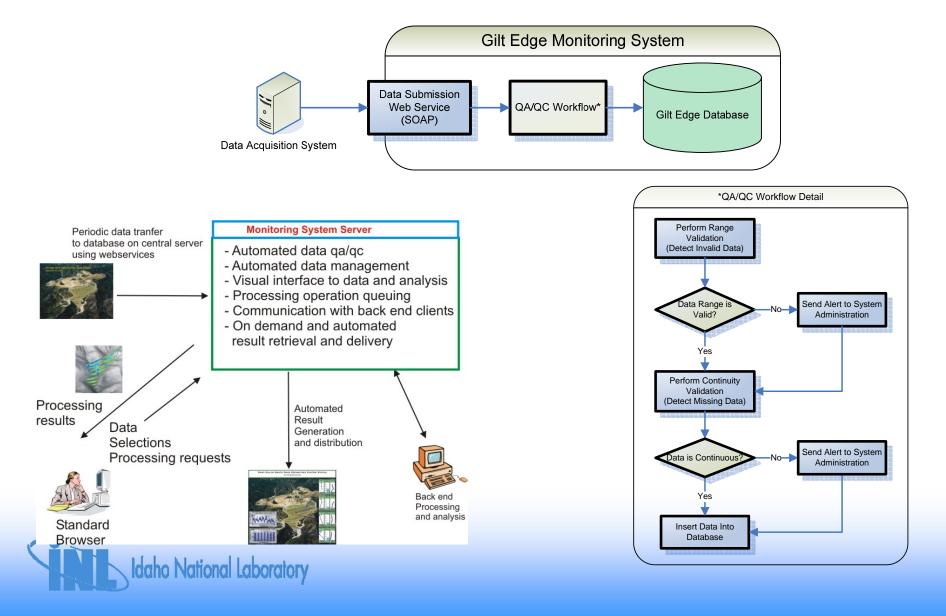
- Service Transport: This layer is responsible for transporting messages between applications. Currently, this includes HTTP, SMTP, FTP, and newer protocols, such as Blocks Extensible Exchange Protocol
- XML Messaging: This layer is responsible for encoding messages in a common XML format so that messages can be understood at either end. Currently, this includes XML-RPC and SOAP.
- Service Description: This layer is responsible for describing the public interface to a specific Web service. Currently, service description is handled via the WSDL.
- Service Discovery: This layer is responsible for centralizing services into a common registry, and providing easy publish/find functionality. Currently, service discovery is handled via the UDDI.

Workflows on the web

- Wrap applications into a webservice
- Describe processing flow as a complex sequence of webservices
- Have workflow engine invoke webservices
- Some Advantages
 - Webservices are self describing
 - Webservices can "live" anywhere
 - Workflows can be self documenting
 - Exposure of application functionality can be tiered
 - User empowerment
 - Webservices can use existing applications no need to reinvent the wheel

Note 1: Effort is standard based

- Approach is based on well published, well documented, industry wide standards
- Allows for easy integration with other efforts (e.g. Google, NASA, ESRI,....)
- Makes for application which has built in longevity



Note 2: Architecture is a SOA

- SOA stands for Service Oriented Architecture
- Operations are implemented as services
- Operations are loosely/lightly coupled
- Services can be accessed without knowledge of underlying implementation
- (think pizza delivery)

Technical implementation example

Approach description

- Current model couples
 - Web interface for workflow composition, configuration and invocation
 - Distributed web services providing functionality
 - Workflow engine performing execution
- Model uses industry standards for communications (XML/SOAP), description (WSDL) and service discovery (UDDI)

Note: Some required elements for running workflows

- Workflow orchestration language (BPEL Business Process Execution Language)
- Libraries of webservices and associated servers
- Yellow pages for webservices for data and applications (UDDI)
- Interfaces

Some other aspects

- Structure integrates seamlessly with Grid Computing/ASCR efforts
- Automatic collaborative research environment
- Implicit compatibility with open source model (not only what was done, but also specific configurations and underlying models)
- Focus on web service functionality (as opposed to implementation) allows for user transparent enhancements
- Provides long term structure for keeping track of data and results at little effort for original PI

300 Area IFC data management implementation

- General objectives
- High level technical description
- Year 1 Objectives
- Scope/actions in year 1

IFC data management objective

- 1 Capture all data and metadata associated with the IFC effort, and provide data management function (QA/QC, warehousing, security)
- 2 Provide a comprehensive, web accessible environment which provides IFC and non IFC scientists
 - Access to IFC related data and results
 - Access to the computational tools used to generate these results (including visualization tools)

IFC implementation – technical summary

- Service Oriented Architecture model for data access, data processing and result delivery
- Common components approach (reuse components developed by other groups)
- Utilize structures and standards developed in other fields
- Build on existing 300 Area efforts
- Adapt and refine existing INL model implementations to IFC needs (for instance, ability to integrate data and models)

Data management Implementation – Year 1

- Objective #1 is capture and store all IFC relevant data
- Done through initial (first 6 months) focus on
 - Data
 - Historic data inventory and collection
 - Basic web based collaborative environment implementation
- Should result in operational system in October 07
- Objective #2 is to understand tools.
 - Done through parallel inventory effort

Science implementation – data (1)

- Obtain from each IFC participant detailed information on all predicted types of data and metadata <u>collected</u> and <u>needed</u> by participant
- Discuss
 - sample planning/scheduling
 - Sample naming conventions
 - Sampling procedures
 - QA/QC rules (formal/informal)
 - Metadata collection
 - Sample analysis steps (analysis tools, calibration procedures, laboratory use)
 - Analysis results
 - Formats
 - Delivery mechanism
 - Current storage approaches

Science implementation – data (2)

- Will result in a sampling type specific data model, as well as clear rules on how data are supposed to be collected, as well as qa/qc rules
- Will also result in proposed mechanisms for data transfer to central repository
- Will result in data models and relational database structures
- Will be tested with actual data
- Will result in a formal "IFC data management plan"
- Will result in a basic web accessible system for data access in 10/07

Historic inventory: collect and assemble in one model all historic data

- Currently in hand
 - Well locations
 - Topography
 - Geophysical data
 - Data from EM monitoring effort
 - High resolution aerial topography
- Planned for integration:
 - Automated well data
 - River stage data
 - Weather data

Objective #2 – tool inventory

- Obtain from each IFC participant information on what they do with the data
- Software packages currently used + typical steps used in packages

Objective by October 2007: Basic collaborative environment

- Implement website (password protected) where users can
 - Access historic data (graph, zoom, download)
 - Access project data (if present)
 - Upload project data
 - Examine project documents (e.g. sampling protocols and plans)
 - Have access to wiki related to data management

Out year efforts

- Commodification of common tasks
 - Graphing
 - 3D visualization
 - Map display
 - Statistics
 - Linear algebra operations
- Models accessible through web interface
- Capture and central storage of user specific parameterizations

Next steps

- Understand IFC and non IFC 300 area data [March/April 2007]
- Project website setup [Early April 2007]
- Data modeling effort [April/May 2007]
- Formalization/Implementation/testing [May/July] of
 - Data acquisition protocols
 - Qa/qc rules
 - Data import mechanisms
- Integration of historic/existing data in one project website [April-July 2007]
- Tool inventory [March/June 2007]
- Start bringing in project data to system [July/October 2007]

Questions?

