

Uranium Reactive Transport in the Hanford 300 Area Vadose Zone-Aquifer-River System

Steve Yabusaki Yilin Fang Scott Waichler

Pacific Northwest National Laboratory

IFC Project Kick-Off Meeting March 21-22, 2007 W.R. Wiley, Environmental Molecular Sciences Laboratory at PNNL

1993 Conceptual Model

Modeling Assumptions in Phase I Remedial Investigation

- 3-D saturated unconfined aquifer; vadose zone not modeled
 - Flow field driven by **monthly** changes in river stage fluctuations
 - Uranium mobility controlled by "best estimate" constant K_d ~1-2 ml/g
- No interaction between aquifer and river
- No interaction between aquifer and vadose zone

Final Prediction: U < 20 ug/L in **3 to 10 years** by natural flushing

can pete04 23b October 25, 2005 1:17 PM

Aquifer Water Levels and Uranium Concentrations

Flow and Transport: Vadose Zone – Aquifer – River System

- 2-D and 3-D modeling with STOMP simulator
- Most current hydrogeology
- Flow and transport driven by hourly river stage fluctuations
- Investigate dynamics of riverbank storage and fluxes across aquifer - river interface
- Investigate release of uranium from contaminated vadose zone sediments due to water table fluctuations

Flow and Transport: Vadose Zone – Aquifer – River System

20:00

22:00

08:00

10:00

Tracer Transport

Aquifer-River Mixing Simulations

- 4-year spinup period
- River tracer mixing zone extends ~150 m inland
- Averaging river stage fluctuations over daily period reduces size of mixing zone
- Monthly average essentially eliminates mixing with river water

Seasonal Variation in Mixing Zone

Pacific Northwest National Laboratory U.S. Department of Energy 11

Aquifer-River Solution Chemistry

- Prolonged seasonal high stage period allows mixing in aquifer with river water
- Significant differences in solution chemistry

Uranium Geochemistry

Constant K_d not consistent with experimental observations

- Uranium sorption varies strongly with transition between aquifer and river water chemistries (e.g., U, Ca, pH, alkalinity concentrations)
- Rate-limited uranium mass transfer identified in column experiments with flow rates consistent with field observations

Key Issues

- Uranium leaching from contaminated vadose zone sediments by water table fluctuations
- Changing uranium geochemistry during mixing and exchange of river and groundwater

Pacific Northwest National Laboratory U.S. Department of Energy 13

Uranium Geochemical Process Models

- Preliminary three-reaction generalized composite surface complexation model (Jim Davis, USGS)
 - accounts for bicarbonate concentration, sediment surface area, and aqueous U(VI) complexation (21 reactions)
 - 1 strong site and 2 weak site reactions:

 $\begin{array}{ll} 2S(OH)_2 + UO_2^{++} + 2H_2CO_3 = SO_2UO_2(HCO_3CO_3)^{--} + 5H^+ & \log K = -16.3 \\ 2W(OH)_2 + UO_2^{++} + 2H_2CO_3 = WO_2UO_2(HCO_3CO_3)^{--} + 5H^+ & \log K = -20.64 \\ 2W(OH)_2 + UO_2^{++} + 2H_2CO_3 = WO_2UO_2 (CO_3)^{---} + 6H^+ & \log K = -28.01 \end{array}$

- Multisite model with variable uranium mass transfer kinetics (Chongxuan Liu, PNNL):
 - Accounts for reaction rates and rate-limited diffusion processes
 - Distributed rate parameters were assumed to follow the Gamma statistical distribution (two parameters):

$$\frac{\partial S}{\partial t} = \sum_{i=1}^{N} \frac{\partial S_i}{\partial t}; \quad \frac{\partial S_i}{\partial t} = \alpha_i \Big[f_i(\alpha_i) K_d^{\ i} C - S_i \Big]$$
$$f_i(\alpha_i) = \int_{\alpha_i}^{\alpha_i + \Delta \alpha_i} \frac{\beta^{-\eta} \tau^{\eta - 1}}{\Gamma(\eta)} \exp\left(-\frac{\tau}{\beta}\right) d\tau$$

Field-Based Reactive Transport Modeling

<u>Account for full sediment size</u> <u>distribution</u>

- < 2 mm size fraction in the lab studies
 - Specific surface area: 27.2 m²/g
 - 8% of total sediment
- Preliminary assumption: gravels are unreactive
 - apportion 8% of the 2.06 kg/L field bulk density for surface complexation

Size (mm)	Mass Distribution (%)
Cobbles	
>12.5	74.5
2.0 - 12.5	17.2
<u>Sand</u>	
1.0 - 2.0	2.64
0.5-1.0	2.34
0.25 - 0.5	0.78
0.149 - 0.25	0.33
0.106 - 0.149	0.19
0.053 - 0.106	0.20
<u>Silt + Clay</u>	
< 0.053	1.78

Unsaturated Flow Model Parameters	Value	Units
Horizontal Hydraulic Conductivity	1500	m/d
Vertical Hydraulic Conductivity	150	m/d
Air entry pressure	23.04	cm
Brooks-Corey λ	0.7465	
Residual Saturation	0.1471	
Relative Permeability Method	Burdine	
Porosity	0.25	
Bulk Density	2.06	Kg/L
Recharge Rate	60	mm/yr
Calculated Water Content	0.08	·

1-D Unsaturated Reactive Transport Simulation

1-D reactive transport simulation

- 60 mm/yr recharge results in 0.75 m/yr pore velocity
- 5 m of vadose zone
- 1 m of contaminated sediment in the middle
 - 30 nM/g U contaminated zone

► GC-SCM

- Sorption front requires over 30 years to move 1 m
- Kd = 12.4 L/kg for this solution chemistry
- Lowest sediment contamination level results in U(VI) above MCL (0.126 uM)
- Multisite kinetic model
 - Very similar to GC-SCM result
 - Kd = 14 similar to the GC-SCM
 - impact of kinetics largely minimized by long transport time scales

Generalized Composite SCM

Multisite Kinetic Model

Aquifer-River Interactions

Adapt GC-SCM for the situation where the solution chemistry changes from river water to groundwater

- 1.4 m/d groundwater
- 30 nM/g U-contaminated sediments
- Initial equilibrium with river water
 - 5.76E-8 M aqueous U
 - Intrinsic Kd > 500 L/kg
- After influx of groundwater
 - Aqueous U is 2.50E-6 M
 - Intrinsic Kd = 13.5 L/kg

Solution Chemistry

Components	River water	1988 Well
	(USGS 6/1/2000)	399-8-3
pH	7.1	7.7
HCO3-	9.18e-4 M	2.66e-3 M
K+	1.75e-5	1.50e-4
NO3-	8.55e-6	1.73e-4
Sr++	1.23e-6	0
Na+	1.00e-4	9.87e-4
Ca++	3.74e-4	1.10e-3
Mg++	1.48e-4	4.10e-4
Cl-	3.10e-5	2.75e-3
SO4	7.08e-5	3.25e-4

2-D Uranium Reactive Transport

5-year model spinup period for multicomponent reactive transport water chemistry with 0.5 h time steps

- Hypothetical source zone of U-contaminated sediments
 - 50 m long by 3 m high rectangular zone centered on mean water table elevation (105 m)
 - 700 ug U / L bulk volume

Large Grid

- 26,268 (20,997 active) grid cells
- source zone 325 m from river
- model testing: multirate kinetics, equilibrium Kd

Small Grid

- 8,512 (6,112 active) grid cells
- source zone 75 m from river
- model testing: multirate kinetics, equilibrium Kd and multicomponent
- Updated multicomponent model (Bond and Davis)
 - Model based on both North and South Process Pond sediments
 - Single site, 2 reactions

 $\frac{\text{SOH} + \text{UO}_2^{2+} + \text{H}_2\text{O} = \text{SOUO}_2\text{OH} + 2\text{H}^+}{\text{SOH} + \text{UO}_2^{2+} + 2\text{H}_2\text{CO}_3 = \text{SOUO}_2(\text{HCO}_3)_2^- + 3\text{H}^+} -4.047$

Large Grid Simulations

Tracer Transport Near River

Net flux above water table is directed inland Net flux below water table is toward river

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 20

Small Grid: Near-River Simulations

Modeling Summary

Interaction between hourly river stage dynamics, highly transmissive and heterogeneous sediments, and spatially variable uranium create field situation more complex than 1993 conceptual model

- Lower vadose zone uranium accessed by high river stage
- Diurnal cycling of high pore velocities
- Mixing zone of aquifer and river water chemistries
 - dictated by river forcing and hydraulic conductivity
 - sensitive to temporal resolution
- Equilibrium constant Kd is not consistent with lab results
- Uranium distribution and mobility can be significantly impacted by
 - rate-limited mass transfer
 - near-river mixing of groundwater and river water
- Work in progress
 - Ongoing limited field investigation (LFI): sediment cores for detailed analysis, geophysical logging to map uranium distribution
 - Laboratory studies provide framework for understanding uranium mobility
 - Solution chemistry
 - Kinetics
 - Field-scale studies identify large-scale transport context for understanding uranium fate

Model Description

- Variably-saturated flow with hourly river-stage boundary condition
- Dynamic seepage face boundary condition for bank storage effects
- Recharge 60 mm/yr at surface, 0.9 mm/yr upward leakage from basalt
- Variable grid spacing
 - 2.0 to 100 m in the horizontal
 - 0.5 to 2.0 m in the vertical
 - large grid: 26,268 (20,997 active) grid cells
 - small grid: 8,512 (6,112 active) grid cells

► 30 minute time steps

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 23

Uranium Reactions

Reaction	log K
	$(\mathbf{I}=0)$
$UO_2^{2+} + H_2O = UO_2OH^+ + H^+$	-5.25
$UO_2^{2+} + 2H_2O = UO_2(OH)_{2,aq} + 2H^+$	-12.15
$UO_2^{2+} + 3H_2O = UO_2(OH)_3^- + 3H^+$	-20.25
$UO_2^{2+} + 4H_2O = UO_2(OH)_4^{2-} + 4H^+$	-32.4
$2UO_2^{2+} + H_2O = (UO_2)_2OH^{3+} + H^+$	-2.70
$2UO_2^{2+} + 2H_2O = (UO_2)_2(OH)_2^{2+} + 2H^+$	-5.62
$3UO_2^{2+} + 4H_2O = (UO_2)_3(OH)_4^{2+} + 4H^+$	-11.90
$3UO_2^{2+} + 5H_2O = (UO_2)_3(OH)_5^+ + 5H^+$	-15.55
$3UO_2^{2+} + 7H_2O = (UO_2)_3(OH)_7^- + 7H^+$	-32.20
$4UO_2^{2+} + 7H_2O = (UO_2)_4(OH)_7^+ + 7H^+$	-21.9
$UO_2^{2+} + CO_3^{2-} = UO_2CO_3(aq)$	9.94
$UO_2^{2+} + 2CO_3^{2-} = UO_2(CO_3)_2^{2-}$	16.61
$UO_2^{2+} + 3CO_3^{2-} = UO_2(CO_3)_3^{4-}$	21.84
$2UO_2^{2+} + CO_3^{2-} + 3H_2O = (UO_2)_2CO_3(OH)_3^{-} + 3H^+$	-0.855
$Ca^{2+} + UO_2^{2+} + 3CO_3^{2-} = CaUO_2(CO_3)_3^{2-}$	25.4
$2Ca^{2+} + UO_2^{2+} + 3CO_3^{2-} = Ca_2UO_2(CO_3)_3 \text{ (aq)}$	30.55
$UO_2^{2+} + NO_3^- = UO_2NO_3^+$	0.3
$\mathrm{UO_2}^{2+} + \mathrm{CI} = \mathrm{UO_2}\mathrm{CI}^+$	0.17
$\mathrm{UO_2}^{2+} + 2\mathrm{CI} = \mathrm{UO_2}\mathrm{Cl_2}(\mathrm{aq})$	-1.1
$UO_2^{2+} + SO_4^{2-} = UO_2SO_4(aq)$	3.15
$UO_2^{2+} + 2SO_4^{2-} = UO_2(SO_4)_2^{2-}$	4.14
$SOH + UO_2^{2+} + H_2O = SOUO_2OH + 2H^+$	-4.548
$SOH + UO_2^{2+} + 2H_2CO_3 = SOUO_2(HCO_3)_2^{-} + 3H^{+}$	-4.047

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 24

Other Reactions

Reaction	Log K
$H^+ + HCO_3^- = H_2CO_3$	6.3414
$HCO_{3}^{-} = CO_{3}^{2-} + H^{+}$	-10.3249
$Ca^{2+} + HCO_3^- = CaCO_3(aq) + H^+$	-7.0088
$Ca^{2+} + CI = CaCl^+$	-0.7004
$Ca^{2+} + 2CI = CaCl_2(aq)$	-0.6535
$Ca^{2+} + HCO_3^- = CaHCO_3^+$	1.0420
$Ca^{2+} + NO_3 = CaNO_3^+$	1.3
$Mg^{2+} + NO_3^- = MgNO_3^+$	1.3
$Ca^{2+} + H_2O = CaOH^+ + H^+$	-12.85
$Ca^{2+} + SO_4^{2-} = CaSO4(aq)$	2.1004
$H^+ + C\Gamma = HCl(aq)$	0.6999
$H^+ + NO_3^- = HNO_3(aq)$	-1.3081
$K^+ + C\Gamma = KCl(aq)$	-1.5004
$K^{+} + SO_{4}^{2-} = KSO_{4}^{-}$	0.875
$Mg^{2+} + HCO_3 = MgCO_3(aq) + H^+$	-7.3562
$Mg^{2+} + CI = MgCI^{+}$	-0.1386
$Mg^{2+} + HCO_3^- = MgHCO_3^+$	1.0329
$Mg^{2+} + SO_4^{2-} = MgSO_4(aq)$	2.4125
$Na^+ + HCO_3 = NaCO_3 + H^+$	-9.8156
$Na^+ + Cl = NaCl$	-0.7821
$Na^+ + HCO_3 = NaHCO_3 (aq)$	0.1557
$Na^{+} + H_2O = NaOH(aq) + H^{+}$	-14.7986
$Na^+ + SO_4^{2-} = NaSO_4^{-}$	0.82
$H^+ + OH^- = H_2O$	13.9911
$\operatorname{Sr}^{2+} + \operatorname{HCO}_3 = \operatorname{SrCO}_3(\operatorname{aq}) + \operatorname{H}^+$	-7.4703
$\mathbf{Sr}^{2+} + \mathbf{CI} = \mathbf{Sr}\mathbf{CI}^{+}$	-0.2533
$\mathbf{Sr}^{2+} + \mathbf{NO}_3^- = \mathbf{SrNO}_3^+$	0.8
$\mathrm{Sr}^{2+} + \mathrm{H}_{2}\mathrm{O} = \mathrm{Sr}\mathrm{OH}^{+} + \mathrm{H}^{+}$	-13.29
$\mathrm{Sr}^{2+} + \mathrm{SO}_4^{2-} = \mathrm{SrSO}_4(\mathrm{aq})$	2.3
$Na^+ + NO_3 = NaNO_3(aq)$	-0.2564
$Ca^{2+} + HCO_3 = Calcite(s) + H^+$	-1.8542

Pacific Northwest National Laboratory U.S. Department of Energy 25