

Geochemical Studies with Hanford 300-Area Sediments IFC Meeting April 29-30, 2008 Deb Stoliker, Mike Hay, Doug Kent, James Davis U.S. Geological Survey, Menlo Park, CA John Zachara PNNL

Joanne Stubbs, Dave Elbert, Linda Veblen, David Veblen Johns Hopkins University

Site Description **300 AREA - North and South Processing Ponds** 1996 / 2001 2003 2004 1943-1975 Liquid >640,000 t 4 pits Backfilled contaminated disposal excavated with inert units soil removed material to ∇ South Pit 1 South Pit 2 North Pit 2 North Pit 1

U(VI) Speciation in Vadose Zone Sediments

D

Ε

Ρ

Т

Η

Wang et al, 2005

U(VI) Speciation in Vadose Zone Sediments

Dispersed U(VI)

coprecipitated in calcite

Excavated material

D

Ε

Ρ

Т

Η

Upper Intermediate

Lower

Ground

-water

 ∇

Discrete uranyl phosphate precipitates (metatorbernite)

Catalano et al, 2006; Arai et al, 2007

U(VI) Speciation in Vadose Zone Sediments

Dispersed U(VI) coprecipitated in calcite Excavated material **Discrete uranyl** precipitates Upper Inter-Weak U(VI) mediate adsorption complexes on Lower phylosilicates ∇ and iron oxides Ground -water

D

Ε

Ρ

Т

Η

Methods

Sediment Characterization

- BET hysteresis, S.A., γ-counting, Hg porosimetry, size-fraction analysis, combined with previous characterization¹
- Artificial Groundwater (AGW) Desorption/Dissolution Kinetics and Sorption Isotherms
 - variable alkalinity, suspension density, and I, individual size fractions
- Surface Complexation Modeling
 - Non-electrostatic, generalized composite approach
- Isotopic Exchange Reactions
 - ²³³U tracer spike after 24 or 1260 hr pre-equilibration

Chemical Extractions

- Sodium (bi)carbonate (pH ~9) & Dilute sodium formate (pH ~3.5),
- Column and Batch Porosity Investigation
 - ³H and Br, long term storage, elution with stop-flow events
 - Modeling of diffusion

¹ Serne et al., 2003; Qafoku et al., 2005; Zachara et al., 2005; Catalano et al., 2006; Arai et al, 2007; Stubbs et al 2008

U(VI) Release from Hanford Sediments in Batch Reactions

pH 7.9 – 8.3, Alkalinity = 4 meq/L, 72 hr

Alkalinity Effects on U Release

North Pond Pit 1 (16 ft bgs) 200 g/L, pH 7.9 – 8.3

Dissolved U(VI) Complexation

Surface Complexation Model

U(VI) Release from Hanford Solids

 High U samples, (25 g/L)
 What controls U(VI) release?
 Fast and slow desorption? dissolution?

> Low U samples, (100 g/L)

Isotopic Exchange a measurement of available U

Isotopic Exchange and "Labile U"

1E-7 50 **Operationally defined** Dissolved [U(VI)] and Labile U(VI) Ŧ 8E-8 40 Ŧ U(VI)_(aq) 233U 6E-8 30 233 4E-8 20 U(VI) 2E-8 10 0E0 0 500 1000 1500 0 Time (hr)

 $[U(VI)]_{Labile} = (A_{System}/A) \times [U(VI)]_{diss}$

²³³U Exchange in Model Systems Fast Desorption

²³³U Exchange in Model Systems Fast/Slow Desorption

U(VI) Desorption from Ferrihydrite

Coupled with ²³³U Exchange

Slower Progression to Equality as U(VI) slowly desorbs from the amorphous oxide

²³³U Exchange in Model Systems Slow Dissolution

1200 1400

U(VI) concentration increases slowly → labile U(VI) calculation depends on pre-equilibration time → indicative of dissolution process

> letatorbernite 233U 233U U(VI)

Groundwater Fines also contain a possible precipitated form of U(VI) in addition to sorbed phase

Consistent with spectroscopic studies suggesting metatorbernite and cuprosklodowskite Cu[(UO₂)(SiO₂OH)]₂·6(H₂O) in GW Fines (Singer, 2007)

Chemical Extraction of Sediment Samples

Determine labile fraction

Desorb U(VI) due to higher pH and carbonate complexation

of total sediment U(VI); adsorption-desorption; dissolution-reprecipitation

Sample	(Bi)carbonate Extraction % of U _{tot} ^a	Isotopic Exchange % of U _{tot} ^b	Formate Extraction % of U _{tot} ^c	Formate Extraction % of Cu _{tot} ^c	
SPP 1-18		36 ± 1	36 ± 1	79 ± 3 *	4 ± 0.1	
SPP 2-16	ġ	42 ± 4	41 ± 2	93 ± 3 *	3 ± 0.1	
NPP 1-20		30 ± 0.5	36 ± 1	$78\pm3~^{*}$	14 ± 1	
NPP 2-4		29 ± 1	88 ± 9	80 ± 2	91 ± 5	

Labile fraction = desorbed fraction for deep vadose zone samples

Labile fraction \neq desorbed fraction for samples with metatorbernite

a. pH = 9.45, alk = 20 meq/L, 72 h; b. pH = 7.9 – 8.3, alk = 4 meq/L, 336h (1260h pre-equil in AGW); c. pH 3.5, 72 h, 0.5 M

Chemical Extraction of Sediment Samples

Determine labile fraction

of total sediment U(VI);

adsorption-desorption;

dissolution-reprecipitation

Desorb U(VI) due to higher pH and carbonate complexation

Desorb and dissolve U(VI) due to buffered, lower pH

Sample	Bicarbonate Extraction % of U _{tot}	Isotopic Exchange % of U _{tot}	Formate Extraction % of U _{tot}	Formate Extraction % of Cu _{tot}
SPP 1-18	36 ± 1	36 ± 1	79 ± 3 *	4 ± 0.1
SPP 2-16	42 ± 4	41 ± 2	93 ± 3 *	3 ± 0.1
NPP 1-20	30 ± 0.5	36 ± 1	78 ± 3 *	14 ± 1
NPP 2-4	29 ± 1	88 ± 9	80 ± 2	91 ± 5

Low pH dissolves most of Cu_{tot}; likely dissolves most of metatorbernite; deep samples don't have metatorbernite

Low pH releases large fraction of U_{tot} ; dissolution of grain coatings releases coprecipitated U(VI) that is not "labile"?

* remaining U is < 1.5 ppm, ~ equivalent to bkg

Hanford <u>uncontaminated</u> vadose zone sample: C5001-67B

Coating consists of micron-sized mineral fragments.

Stubbs et al., 2008

Hanford <u>contaminated</u> vadose zone sample: NPP2-2

Coatings have finer texture, with fine-grained clay rind several microns thick.

May be influenced by infiltration of variable pH water with high concentrations of Al and Si.

Hanford contaminated vadose zone sample: NPP2-2

Backscattering image of a 60 μm wide, fine-grained clay coating.

Outer edge of coating: very high concentrations of Zr and U, presumably from cladding waste.

Electron microprobe WDS linescans show gradients in U concentration across the coating.

Stubbs et al., 2008

(Bi)carbonate extraction does not appear to remove U in metatorbernite, Zr-rinds, clay coating, void linings

Stubbs et al., 2008

Hanford contaminated vadose zone sample: NPP2-4

Arai et al., 2008

U(VI) Release from Size-Fractions of 300-Area Sediments (<2 mm)

After 24 hr reaction with AGW 4 (4 meq/L)

Smaller grains release U(VI) rapidly to solution

>0.5 – 1 mm: 100 g/L, 0.25 – 0.5 mm: 25 g/L, 0.125 – 0.25 mm: 10 g/L, <0.125: 2 g/L

U(VI) Release from Size-Fractions of 300-Area Sediments (<2 mm)

Three largest size fractions account for nearly 100% of U(VI) release

Smaller size fractions have rapid kinetics and reach steady state on short time scale

Larger size fractions have slow release over time suggesting mass transfer limitations

SPP 2-8

Part II:

Grain-scale porosity and diffusion in Hanford 300 Area sediments

Experiments and Modeling

Uranium interaction with Hanford sediments exhibits kinetic (*diffusion*) limitation

Chemical extractions are rate limited

- Deeper sediments (desorption): Diffusion kinetics
- Upper sediments (dissolution): Chemical and diffusion kinetics

²³³U isotope exchange experiments

Release rate is dependent on size fraction

- Faster release with smaller size fraction
- Function of diffusion path length?

"U(VI) release and transport... are kinetically controlled."
 SPP2-18 sediments; Qafoku et al., ES&T, 2005)

- Diffusion limitation observed (and modeled) in other Hanford sediments
 - BX-102 sediments: Liu et al., 2004, 2006 McKinley et al., 2006 Ilton et al., 2008

Microscale Diffusion

Goals: Determine properties of microscale diffusion domain

Grain aggregates, clay coatings, grain fractures ("Intragranular" pore space)

- Intragranular pore volume
- Exchange rates and behavior

Method: High resolution non-reactive flow-interruption tracer studies

300-A Column Tracer Studies: Experiment

Methodology (Deb Stoliker)

r = 1.1 cm, h = 5-15 cm, n = 50%
Loaded with ³H in AGW

1.7×10⁶ dpm/mL (750 nCi/mL)
C₀ > 10⁴ × detection limit

Sealed and stored for ~5 mo
Eluted with non-tracer AGW
~8 stopflows: hours to days

Various 300-A sediments:

300-A Column Tracer Studies: Experiment

SPP2-16:

300-A Column Tracer Studies: Modeling

Methodology

- Multi-rate first order mass exchange
- Dispersion coefficient fit from breakthrough and first elution (CXTFIT)

- Two rates (zones) used to describe "intragranular" porosity
- Determine pore size, exchange rates

300-A Column Tracer Studies: Modeling

Methodology

- Multi-rate first order mass exchange
- Dispersion coefficient fit from breakthrough and first elution (CXTFIT)
- "Dual-porosity" model used when necessary
- Stopflows modeled using PHREEQC
 - Two rates (zones) used to describe "intragranular" porosity
 - Determine pore size, exchange rates

Results: SPP 2-16

300-A + ³H Stopflow Column Summary

	Mobile-immobile ratio (β)		Mass-exchange coefficient (α)	Intragranular porosity (θ)	% volume of sediment
NPP 2-4	1.0	region 1: region 2:	1.5×10 ⁻⁷ s ⁻¹ 3.3×10 ⁻⁹ s ⁻¹	0.003 0.0022 0.0052	0.60 0.45 1.05
SPP1-18	0.7	region 1: region 2:	1.0×10 ⁻⁶ s ⁻¹ 3.0×10 ⁻⁹ s ⁻¹	0.0091 0.0016 0.0107	1.67 0.29 1.96
SPP2-16	0.3	region 1: region 2:	1.4×10 ^{₋7} s ⁻¹ 1.6×10 ⁻⁹ s ⁻¹	0.0025 0.00096 0.00346	0.40 0.16 0.56
SPP2-18	0.5	region 1: region 2:	1.6×10 ⁻⁶ s ⁻¹ 2.8×10 ⁻⁹ s ⁻¹	0.0200 0.0020 0.0220	3.18 0.32 3.50

• Dual porosity required, BUT <u>stopflows</u> insensitive to β

- Intragranular pore volume 0.5-3.5% of sediment volume
- Two rates differ by 2-3 orders of magnitude
- Slower region is relatively consistent between columns

Current and future work

- Batch tracer experiments to complement column work
- Additional (high resolution) tracers
 Better models for U(VI) species?
- Modeling of batch U(VI) data
 "Kinetic" SCM (diffusion + surface complexation)

Porosity and Surface Area (N₂, Hg)

		Surface area (m²/g)			Volume (cm ³ /g)			
Pore diam	eter:	< 300 nm	< 100 nm	< 10 nm	< 300 nm	< 100 nm	< 10 nm	
	N ₂	29.92	Rolling	- A. 1-101	0.0892	25 horas	the Mar	
NEF I-IO	Hg	12.33	12.07	6.94 56%	0.0615	0.0495	0.0096 16%	
NPP1-20	N_2	17.44			0.0369			
	Hg	7.75	7.54	5.56 72%	0.0309	0.0214	0.0075 24%	
SPP2-8	N ₂	15.38			0.0339			
	Hg	7.52	7.33	5.08 68%	0.0316	0.0237	0.0077 24%	

Small volume in narrow pores, but <u>large</u> surface area

Intragranular pore volume, while small, is highly reactive

U(VI) concentration increases slowly → labile U(VI) calculation depends on pre-equilibration time → indicative of dissolution process

U(V

Chemical Extraction of Sediment Samples

Determine labile fraction

of total sediment U(VI);

adsorption-desorption;

dissolution-reprecipitation

Desorb U(VI) due to higher pH and carbonate complexation

Desorb and dissolve U(VI) due to buffered, lower pH

Sample	Bicarbonate Extraction % of U _{tot}	Isotopic Exchange % of U _{tot}	Formate Extraction % of U _{tot}	No. No. No. No.	Formate Extraction % of Cu _{tot}
SPP 1-18	36 ± 1	36 ± 1	79 ± 3		4 ± 0.1
SPP 2-16	42 ± 4	41 ± 2	93 ± 3		3 ± 0.1
NPP 1-20	30 ± 0.5	36 ± 1	78 ± 3		14 ± 1
NPP 2-4	29 ± 1	88 ± 9	80 ± 2		91 ± 5

Low pH dissolves most of Cu_{tot}; likely dissolves most of metatorbernite; deep samples don't have metatorbernite

Low pH releases large fraction of U_{tot} ; dissolution of grain coatings releases coprecipitated U(VI) that is not "labile"?

Surface Complexation Model

 $>SOH + UO_2^{2+} + H_2O = >SOUO_2OH + 2H^+$ $logK_1$ $>SOH + UO_2^{2+} + H_2CO_3 = >SOUO_2CO_3 + 2H^+$ $logK_2$

Dissolved U(VI) Complexation

Updated Dissolved U(VI) Complexation

Surface Complexation Model

 $>SOH + UO_2^{2+} + H_2O = >SOUO_2OH + 2H^+$ $logK_1$ $>SOH + UO_2^{2+} + H_2CO_3 = >SOUO_2CO_3 + 2H^+$ $logK_2$

