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Characterizing mass transfer



Pore-scale diffusion

• Migration through pore network in 
response to ∂µe

i/∂x
• Formation of surface complexes
• Formation of aqueous complexes (ƒ(aCa, 

aCO3, aUO2, etc.))
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Mass transfer of U(VI) in minerals to adsorbed U(VI)
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Impact of variable chemistry on diffusive 
mass transfer: batch experiments

North Pond Pit 1 (16 ft bgs) 200 g/L, pH 7.9 – 8.3
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Impact of variable chemistry on diffusive 
mass transfer: column experiments
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Characterization of porosity

• Bulk characterization (N2 adsorption, Hg-
porisimetry)

• Stop flow elution (tritium, other tracers with 
high values of C0/ql)

• Microscopic characterization (e.g., EM)



• Current grain-scale mass transfer 
models

• Parameters in the models
• Upscaling of grain-scale model to 

large or field scale systems



Current modeling approaches of 
grain-scale mass transfer: 

• Link with surface complexation (SC) and aqueous 
speciation

• Requirement of mass-transfer rate coefficients
• Empirical nature: rate coefficients dependent on 

geochemical conditions?
• Difficulty to link with dissolution/precipitation 

reactions in mass transfer-limited domains?
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q: sorbed concentration, S: sorption at equilibrium, α: mass transfer 
rate coefficient, N: number of species, M: number of rate sites.

Multi-rate approach (WRR, in press)



Example of the multi-rate approach
NPP 1-14 fine-grained materials (< 2mm), SGW
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Is p(a) dependent on geochemical conditions?



Current modeling approaches of 
grain-scale mass transfer: 

• Link with surface complexation (SC), aqueous 
speciation, and dissolution/precipitation reactions

• More mechanistic and predictive?
• Requirements of molecular diffusion coefficients, 

apparent tortuosity factor, and diffusion zone porosity

c and s: aqueous and sorbed concentration in diffusion-
zone, τ: apparent tortuosity; Di: molecular diffusion 
coefficient of species i, θd: diffusion zone porosity.

Diffusion-based approach (WRR, 2006)
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Diffusion coefficient and apparent 
tortuosity

Diffusion coefficient:  
1) MD calculation for molecular
diffusion coefficients.
2) Experiments?

Apparent tortuosity:
1) Bulk-based tracer experiments
(tritium), 2) direct intragrain 
pore connectivity measurements
(NMR),  3) pore connectivity
simulation, and others?



Effect of water content on mass 
transfer

Water Content (saturation degree %)
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Effects of water content on grain-scale mass transfer?
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Proposed scaling approach
• Grain-scale mass transfer model for reactive, 

fine-grained materials
• Flow domain properties from tracer data of a 

large system: mobile/immobile porosity, mass 
transfer rate between flow domains

• Distribution of reactive, fine-grained materials in 
different flow domains within the REV based on 
their porosity ratio

• Volume-averaging of grain-scale mass transfer 
models in each flow domain

• Mass exchange between flow domains



Example of the scaling approach
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Applicable under other geochemical conditions? other 
textured-sediments? field conditions?



Haggerty*: Series of 3 bench-
scale experiments

What are essential intermediate-scale
processes

time-varying velocity
vadose zone mass transfer
intermediate-scale mass transfer (sm vs 
med length-scales)

that must be included along with 
chemistry in reaction & multiscale mass 
transfer model?

* with assistance from J Istok lab



Changes in gradient & 
water table

Zachara presentation, Nov. 2007



Sand box experiments

Artificial Hanford GW

Sample ports, electrodes
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Sand box experiments

Artificial Columbia River – low CaCO3

• Time-varying 
boundaries 
– Hanford sediment
– artificial CR & 
– Hanford waters

• U(VI) injection at 
SPP conc. 

• Do we see the essential features of 300 
Area?

Artificial Hanford GW – high CaCO3



• column 50? cm long, 10? cm ID
– question re: >2 mm fraction include or not?  

Capillarity scaling issue.
• water flows from top

or bottom
• instruments:

– sample ports every 5 cm vertically
– water content
– electrical conductivity

• measure long-term leaching of U(VI)
• post-mortem analysis of U(VI) spatial distribution 

(budget-dependent)

Fluctuating water table 
experiments

Water table moves
up and down



Mass Transfer Scale & Process

• motivation:
– movie 1
– movie 2
– movie 3

Zinn et al., 2004
DOE grant DE-FG02-ooER15030

Increasing 
immobile 
zone size



• 2 saturated columns 
<2mm size and same 
grain size distribution
– 1 homogenized
– 1 heterogeneous

• zones with larger sizes
• embedded zones with

smaller sizes
• measure long-term leaching of U(VI)
• post-mortem analysis of U(VI)

spatial distribution (budget-dependent)
• ?post-mortem flow-path analysis with

water-soluble epoxy or fluorescent 
microspheres?

Intermediate-scale, long-term 
desorption/dissolution exps


