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Pore-scale diffusion

* Migration through pore network in
response to dus&,/ox

* Formation of surface complexes

» Formation of aqueous complexes (f(ac.,
Acos: Aoy etc.))
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Physical heterogeneity within REV
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Upper vadose zone
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Mass transfer of U(VI) in minerals to adsorbed U(VI)




Impact of variable chemistry on diffusive
mass transfer: batch experiments

North Pond Pit 1 (16 ft bgs) 200 g/L, pH 7.9 — 8.3
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Impact of variable chemistry on diffusive
mass transfer: column experiments
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Characterization of porosity

» Bulk characterization (N, adsorption, Hg-
porisimetry)

« Stop flow elution (tritium, other tracers with
high values of C,/ql)

* Microscopic characterization (e.g., EM)




» Current grain-scale mass transfer
models

« Parameters in the models

» Upscaling of grain-scale model to
large or field scale systems




Current modeling approaches of
grain-scale mass transfer:

Multi-rate approach (WRR, in

’
o :ak(sik_qik) 1=1,2,..,Nok=1,2,..M

g: sorbed concentration, S: sorption at equilibrium, o.: mass transfer
rate coefficient, N: number of species, M: number of rate sites.

Link with surface complexation (SC) and aqueous
speciation
Requirement of mass-transfer rate coefficients

Empirical nature: rate coefficients dependent on
geochemical conditions?

Difficulty to link with dissolution/precipitation
reactions In mass transfer-limited domains?




Example of the multi-rate approach

NPP 1-14 fine-grained materials (< 2mm), SGW
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Is p(a) dependent on geochemical conditions?




Current modeling approaches of
grain-scale mass transfer:

Diffusion-based approach (WRR, 2006)

OC, 0S,

N oc,
0,—+(1-6 0,D. +0.r. ./, D.D,c
8t ( ),05 8’[ Zax( ik GX] d'i D = D5 -

ZZ k k
c and s: aqueous and sorbed concentration in diffusion- k=1

zone, 7. apparent tortuosity; D;: molecular diffusion
coefficient of species i, 6,: diffusion zone porosity.

 Link with surface complexation (SC), aqueous

speciation, and dissolution/precipitation reactions
* More mechanistic and predictive?

* Requirements of molecular diffusion coefficients,
apparent tortuosity factor, and diffusion zone porosity




Diffusion coefficient and apparent
tortuosity

| Diffusion coefficient:

%l 1) MD calculation for molecular
diffusion coefficients.
2) Experiments?

21 Apparent tortuosity:
==| 1) Bulk-based tracer experiments
(tritium), 2) direct intragrain
pore connectivity measurements
(NMR), 3) pore connectivity
simulation, and others?




Effect of water content on mass
transfer

O Ssand (Mehta et al., 1995, Soil Sci)
@ Clay (Porter et al., 1960, SSSAJ)
A\ Silty Clay (So & Nye, 1989, J Soil Sci) ®
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Effects of water content on grain-scale mass transfer?




Physical heterogeneity within REV
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Proposed scaling approach

Grain-scale mass transfer model for reactive,
fine-grained materials

Flow domain properties from tracer data of a
large system: mobile/immobile porosity, mass
transfer rate between flow domains

Distribution of reactive, fine-grained materials in
different flow domains within the REV based on
their porosity ratio

Volume-averaging of grain-scale mass transfer
models in each flow domain

Mass exchange between flow domains
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Applicable under other geochemical conditions? other

textured-sediments? field conditions?



What are essential Intermediate-scale
Processes
time-varying velocity
vadose zone mass transfer

Intermediate-scale mass transfer (sm vs
med length-scales)

that must be included along with

chemistry in reaction & multiscale mass
transfer model?

* with assistance from J Istok lab




1-1,1-23,1-12 - August

Changes in gradient &
water table
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Sand box experiments




Sand box experiments

 Time-varying
boundaries =l
- Hanford sedment Jgg
— artificial CR &
— Hanford waters

« U(VI) injection at
SPP conc.

* Do we see the essential features of 300
Area”?




Fluctuating water table
experiments

i




decrsasing
 gradient
~

b
Sy
b

n

INCreasing ppm——,
zone size ciffusion time in emplacement




Intermediate-scale, long-term
desorption/dissolution exps




