

Modelling Approaches and Issues

Peter C. Lichtner

Los Alamos National Laboratory

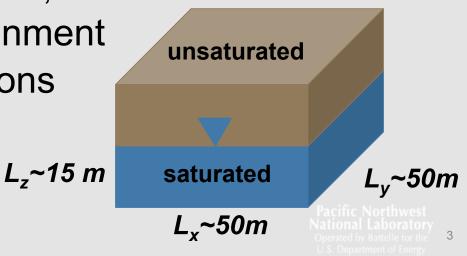
April 16-19, 2007

Pacific Northwest National Laboratory U.S. Department of Energy

Outline

Modeling Challenges
 Site Characterization

 Physical and chemical properties
 U(VI) Source Term


 Scale Up
 Multiscale Models
 Need for High Performance Computing

Modeling Challenges

3D Domain: length and time scales

- field scale domain (5-50m)
- hourly river fluctuations, ~year predictions
- Complex chemistry: Na-K-Ca-Fe-Mg-Br-N-CO₂-P-S-CI-Si-U-Cu-H₂O (~15 primary species)
- ► Multiscale processes (µm-m)
- Highly heterogeneous sediments
 - fine sand, silt; coarse gravels; cobbles
- Variably saturated environment
- Initial & boundary conditions

Site Characterization

Porosity, permeability, relative permeability and capillary pressure relations

► U(VI) concentration in aqueous and solid phases

Surface complexation site density

Mineral surface areas, rate constants and abundances

Multiscale model parameters

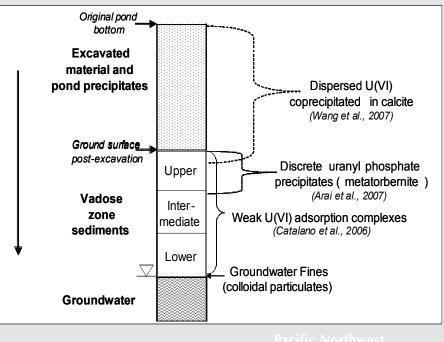
Geostatistical model to generate multiple realizations

U(VI) Source Term

Vadose zone source
 Release mechanisms
 Fluctuating water table
 Mineral dissolution
 Desorption
 Diffusion
 Infiltration
 Chinock (~200 mm/d 1

- Chinook (~200 mm/d 1985)
- Mean 200 mm/y

Sub-Grid Scale Model


D E

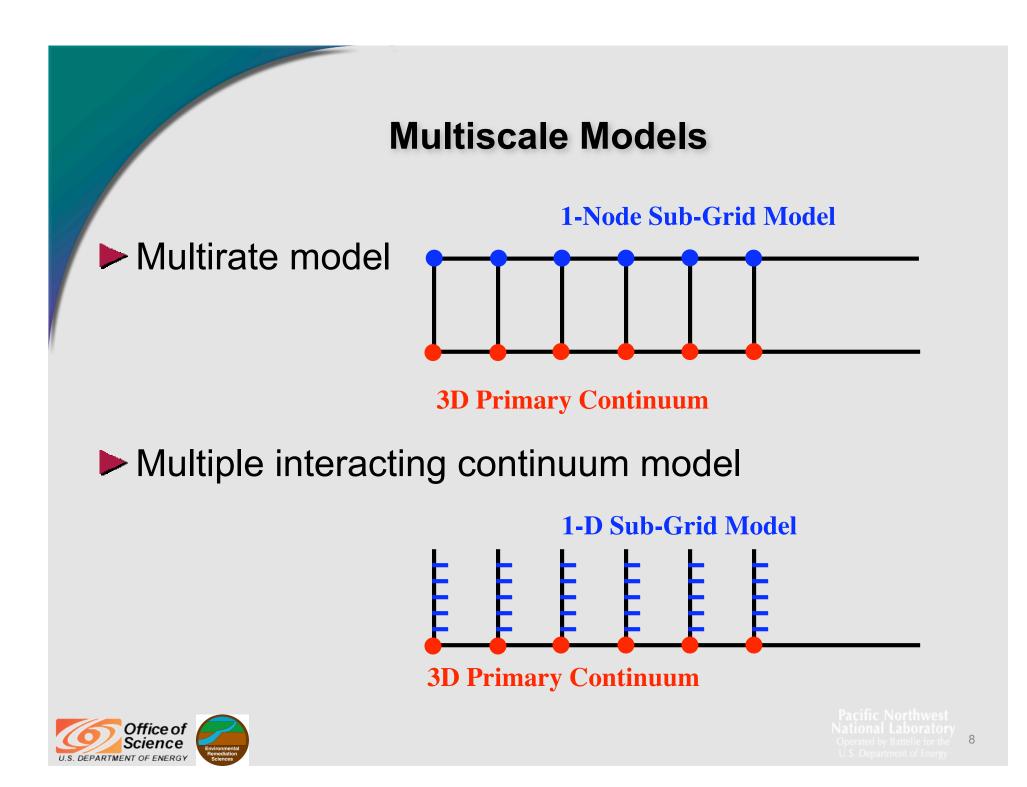
Ρ

Т

н

- Mineral form (kinetic dissolution)
 - Co-precipitation of U(VI) with calcite
 - Metatorbernite [Cu(UO₂)₂(PO₄)₂·8H₂O]
- Sorbed form (surface complexation-local equilibrium)
- Intra-granular diffusion
- Sub-domain distribution

6


Scale Up

- Spatial
 - Small column \Rightarrow large column \Rightarrow field
 - Core scale (column support data): 1-10 cm
 - Field domain size: L ~ 5-50 m
- Temporal
 - Highly fluctuating river stage (~hourly)
 - Time step Δt : 1 hour = 1.14 \times 10⁻⁴ years
 - 8.76×10^6 time steps to reach 1000 years

Methods

- Geostatistical methods to extrapolate between wells
- Fitting to column experiments
- Time averaging

Two-Domain Model

Primary continuum:

$$\frac{\partial}{\partial t}\epsilon_{\alpha}\varphi_{\alpha}R_{j}^{\alpha}\Psi_{j}^{\alpha}+\boldsymbol{\nabla}\cdot\epsilon_{\alpha}\boldsymbol{\Omega}_{j}^{\alpha}=-\epsilon_{\alpha}\sum_{m}\nu_{jm}I_{m}^{\alpha}-\Gamma_{j}^{\alpha\beta}\left(\Psi_{j}^{\alpha}-\Psi_{j}^{\beta}\right)$$

Secondary continua:

$$rac{\partial}{\partial t}\epsilon_etaarphi_eta R_j^eta \Psi_j^eta + oldsymbol{
abla}\cdot\epsilon_eta \Omega_j^eta = -\epsilon_eta \sum_m
u_{jm} I_m^eta + \Gamma_j^{lphaeta} igl(\Psi_j^lpha - \Psi_j^eta igr)$$

Mineral mass transfer:

$$\frac{\partial \varphi_s^\alpha}{\partial t} = \overline{V}_s I_s^\alpha,$$

 $\frac{\partial \varphi^\beta_s}{\partial t}$ $=\overline{V}_s I_s^{eta}$

Multiple Interacting Continuum Model

Primary continuum ($\alpha = primary fluid$):

 $\frac{\partial}{\partial t}\epsilon_{\alpha}\varphi_{\alpha}R_{j}^{\alpha}\Psi_{j}^{\alpha}+\boldsymbol{\nabla}\cdot\epsilon_{\alpha}\boldsymbol{\Omega}_{j}^{\alpha}=-\epsilon_{\alpha}\sum_{m}\nu_{jm}I_{m}^{\alpha}-\sum_{\beta}a_{\alpha\beta}\Omega_{j}^{\alpha\beta}$

Secondary continua (β^{th} continuum):

$$\frac{\partial}{\partial t}\epsilon_{\beta}\varphi_{\beta}R_{j}^{\beta}\Psi_{j}^{\beta} + \boldsymbol{\nabla}\cdot\epsilon_{\beta}\boldsymbol{\Omega}_{j}^{\beta} = -\epsilon_{\beta}\sum_{m}\nu_{jm}I_{m}^{\beta}$$

Boundary conditions:

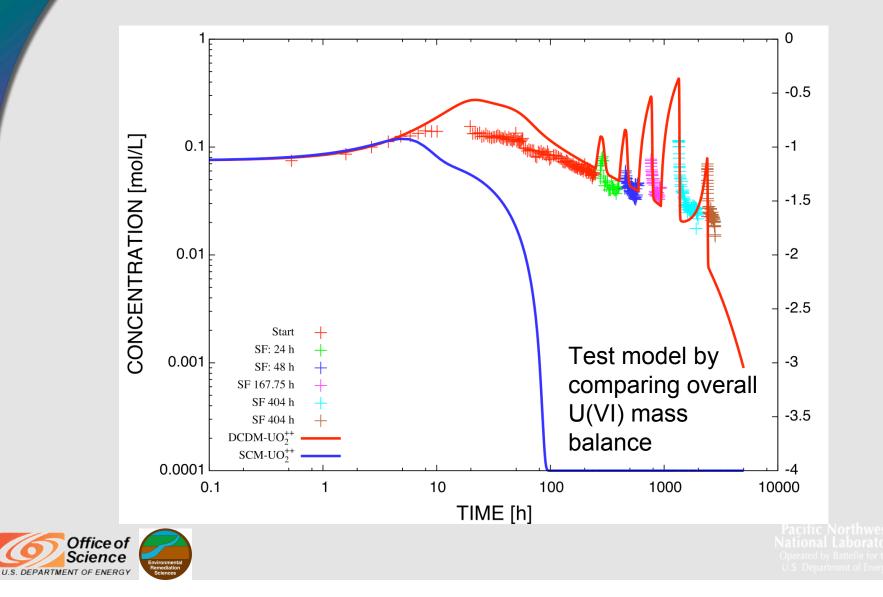
$$\Psi^{meta}_{m j}(0,\,t\,|m r)=\Psi^{mlpha}_{m j}(m r,\,t),~~~~\Omega^{mlphaeta}_{m j}=-arphi_{meta}D_{meta}\left(rac{\Psi^{mlpha}_{m j}-\Psi^{meta}_{m j}}{d_{mlphaeta}}
ight)$$

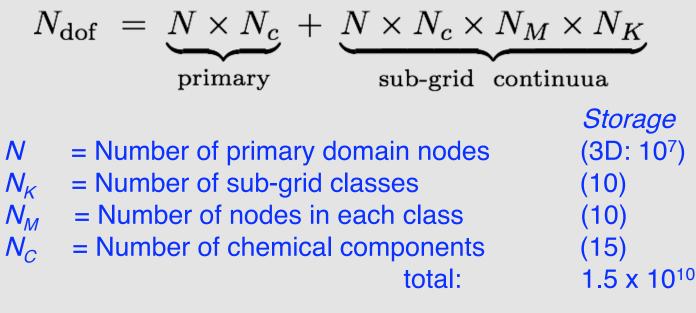
Mineral mass transfer:

$$\frac{\partial \varphi_s^{\alpha}}{\partial t} = \overline{V}_s I_s^{\alpha}, \quad \frac{\partial \varphi_s^{\beta}}{\partial t}$$

 $\overline{V}_s I_s^{eta}$

-R

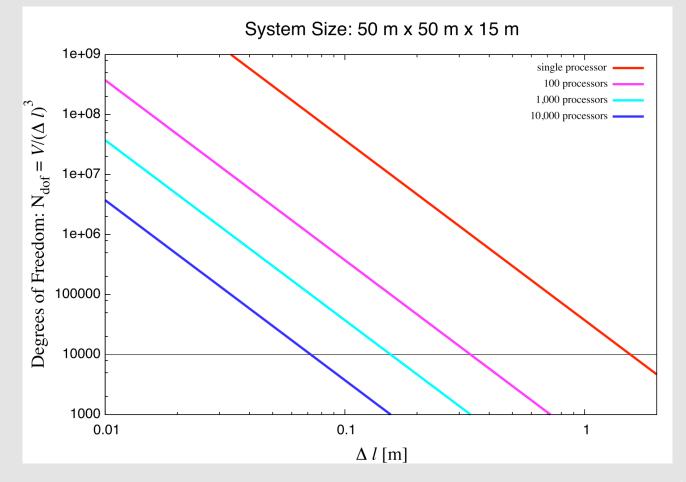

Hanford Large Column Exp. NPP1-14



Multiscale Model of Hanford Large Column Exp.

12

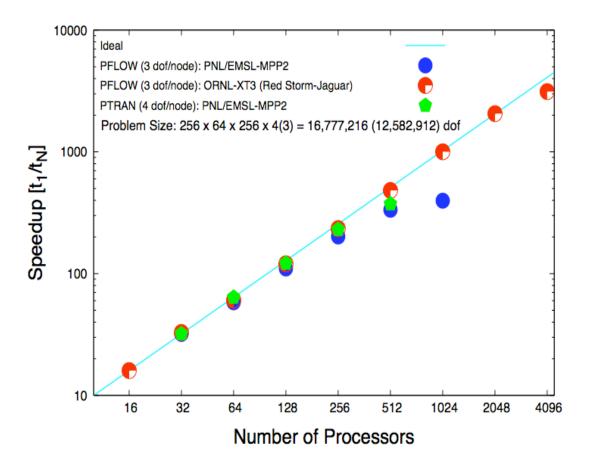
Number of Degrees of Freedom



- Employ sub-grid model only where needed
- Combine with adaptive mesh refinement
- Use efficient numerical schemes to rigorously "decouple" primary and secondary continua
 - Operator splitting
 - Fully implicit

Computational Resources

Degrees of Freedom



PFLOTRAN Parallel Efficiency on PNNL MPP2 and ORNL Jaguar XT3

Jaguar: 11,508 dual-core 2.6GHz AMD Opteron processors, 4 GB of memory (2 GB per core) for a total of 46 TB, 600 TB of scratch space, Cray Seastar router through Hypertransport interconnected in a 3D-torus topology providing very high bandwidth, low latency, and extreme scalability.

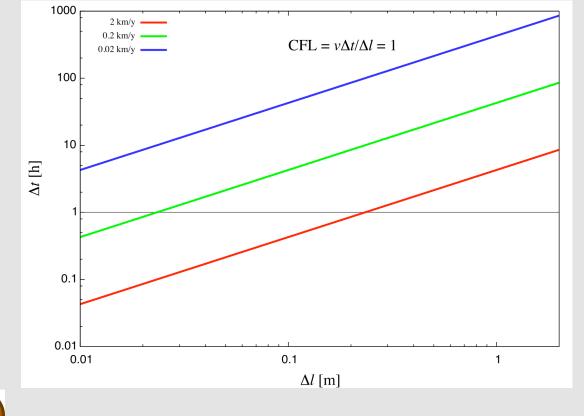
National Laboratory Operated by Battelle for the 15 U.S. Department of Energy

Multirate Model

Sorption model:

$$\begin{split} \frac{\partial}{\partial t} \varphi C_j + \boldsymbol{\nabla} \cdot \boldsymbol{F}_j &= -\sum_{\beta} \Gamma_j^{\beta} (f_{\beta} K_j^d C_j - S_j^{\beta}) \\ \frac{\partial S_j^{\beta}}{\partial t} &= \Gamma_j^{\beta} (f_{\beta} K_j^d C_j - S_j^{\beta}) \end{split}$$

Not clear how to include mineral precipitation and dissolution



Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

16

Time Step Control

Groundwater velocity: q ~ 500 m/y (Darcy Vel.)
 Porosity = 0.25, v_{pore} ~ 2 km/y
 CFL = v Δt/Δl ~ 1, Δt = 1 hour, Δl ~ 20 cm

