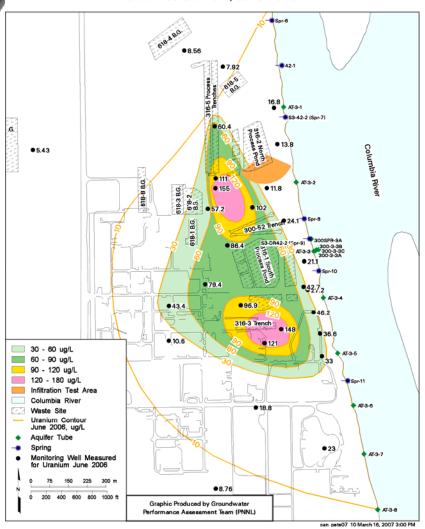
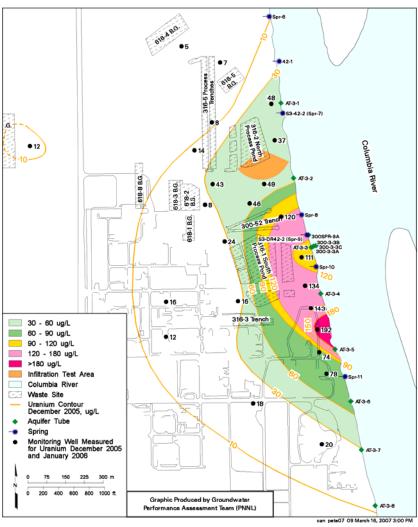
Saturated Zone Injection Array


J.P. McKinley, PNNL

IFC Kickoff Meeting Richland, Washington March 21, 2007



Uranium Plume Winter and Spring

300 Area Uranium, December 2005

The Injection Array and Experiments

Saturated zone injection site and well array
Radial well array that links with infiltration plot
Continuous monitoring of key variables

Interrogate multiple flowpaths/directions

Experiments

Vary HCO₃ to promote desorption
Vary [U(VI)]_T to evaluate adsorption
²³³U(VI) to evaluate mass transfer w/o reaction

Necessary Supporting Information

Lithologic characterizations
Variability of U concentrations, spatially and v. lithology
In situ aqueous phase composition

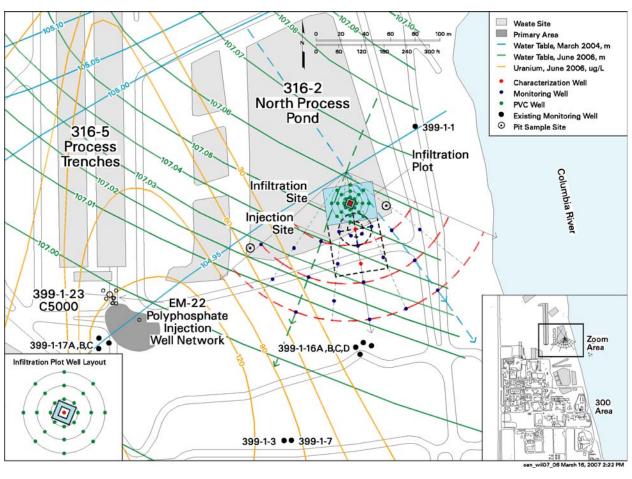
A Saturated Zone Experiment

Natural Gradient Transport

- River or groundwater derived solutes injected
 - Stimulate desorption (carbonate solution)
 - Stimulate adsorption (high U with lower carbonate)
 - Isotope dilution using ²³³U (not present in contaminant plume)
- With non-reactive tracers (e.g., Br⁻)
- Injected over 1.5 m depth in the aquifer
- Proceed until steady state concentration observed in 1st tier of observation wells
- Cease injection; monitor elution
- Monitor evolution of tracer and reactants downgradient 10 20 m (strive for mass balance of non-tracers)
- 2- 40 day per field experiment
- Along two+ flow paths determined by gradient variation
- Parameterized by laboratory columns and characterization of field samples

Observation Wells

- Intensive U(VI) sample screening (250 aqueous samples)
- In-plume analyses for cations, anions, DIC, DOC, pH


Characterization Details and Questions

"Rigorous site characterization essential; physical, chemical, microbiological heterogeneity is extreme"

- Layout: Location, well density and spacing
- Aqueous sampling strategy/analytes
 - Solute, isotopes, etc., beyond U-cations-anions-carbon-pH
- Physical metering and metering density
 - Temperature, stage, gw level, velocity
- Geophysics: needs for linkage to characterization
- Solid-phase
 - Microscale, macroscale, chemical, physical for linkage to transport
- Microbiology
 - Sampling scale, scope of effort, link to EM polyphosphate
- Specific linkage to data from other projects
 - Geophysics, Groundwater, logging

The Injection Array

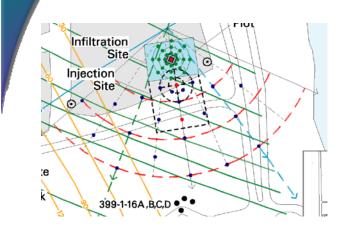
Seasonal variation in

flow direction (not well characterized; semiannual sampling)

Array includes

3 Characterization Wells

21 observation wells



- 120' deep, 6" diam, 35' w.t., 15 -20' screen, pump installed at completion
- Address needs for transport experimentation
 - Stratigraphic Characterization
 - Geochemical characterization
 - Aquifer sampling

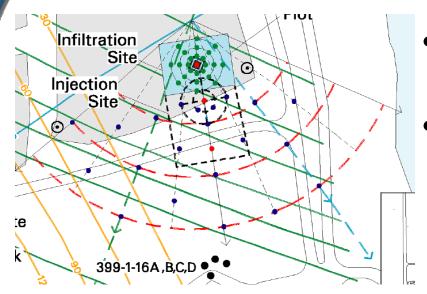
Characterization Wells

Characterization Wells

- Infiltration Site
 - Continuously cored to bottom
- Injection Array
 - Drilled to water table, continuously cored to depth
- Characterization: lithology, U concentration, fines mineralogy...
 - •Permit correlation with geophysical measurements for 3D stratigraphy
 - •Establish well-defined basis for hydrologic measurements and modelling
 - Saturated sediment concentration of U is unknown
 - •Estimate of lateral variation in geochemical properties
 - •Microbiological characterization; little understood

Microbiology

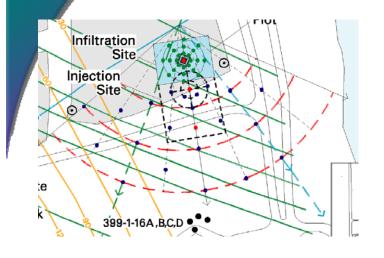
Limited Characterization to Date


- Near-shore samples from pit excavations
 - Glucose, N, P amendment: Fe(III) reduction rapid after 4 month incubation
 - Small indigenous population that responds slowly to biostimulation, then active
- Three boreholes at 100N
 - PCR of Bacteria showed 10⁵ 10⁷ cell equiv. g⁻¹
- Direct injection of glycerol-polylactate compound at 100 H
 - <10⁵ to 10⁷ cells ml⁻¹ after 2 weeks, decrease in Cr(VI)
- Recent near-shore sampling showed widespread presence of Shewanella

Scientific Questions

- Effect of microbial activity on U mobility unknown
- Effect on microbial community of injected phosphate unknown; stimulation (P limited) or no effect (e⁻ donor limited)?
- Role of microbial community in stability of polyphosphate-induced autunite unknown.

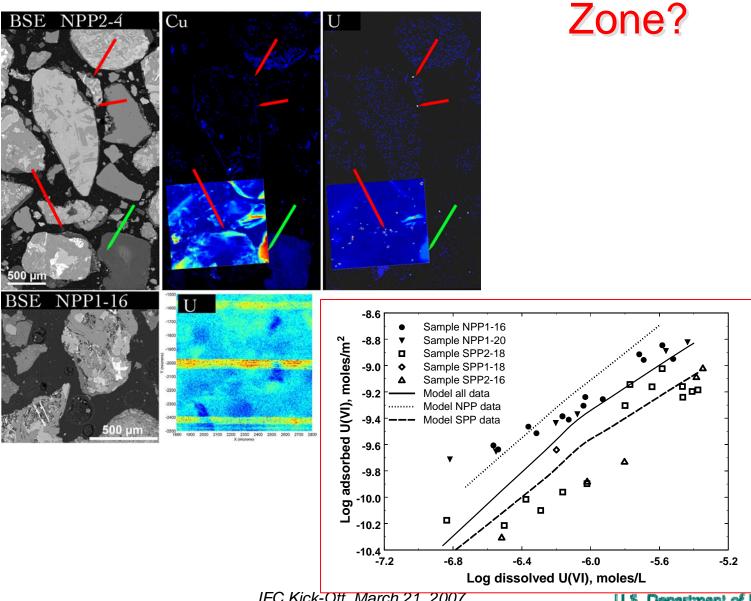
Observation Wells



- Radially downgradient from infiltration gallery
- 55' deep, 2 4" diam., 35' w.t., 5 - 20' screen, pump installed at completion

- Address needs for transport experimentation
 - Monitor tracer and injection cloud migration

Observation Wells Grab Samples


Unresolved

- Sample depths (vadose and saturated)
- Depth spacing(2', 5', etc.)
- •Pore water expression or post-drilling pump/bail?

Characterization of samples collected during drilling to provide needed information regarding *in situ* geochemical properties

- Stratigraphic relationships across field site
- Vertical distribution of sediment U
- Lateral distribution of sediment U v. sediment texture
- •Direct estimate of K_D for in situ system derived from aquifer-level measurements
- •Tool for geophysical interpretations?

How is U Partitioned in the Saturated

Baffelle

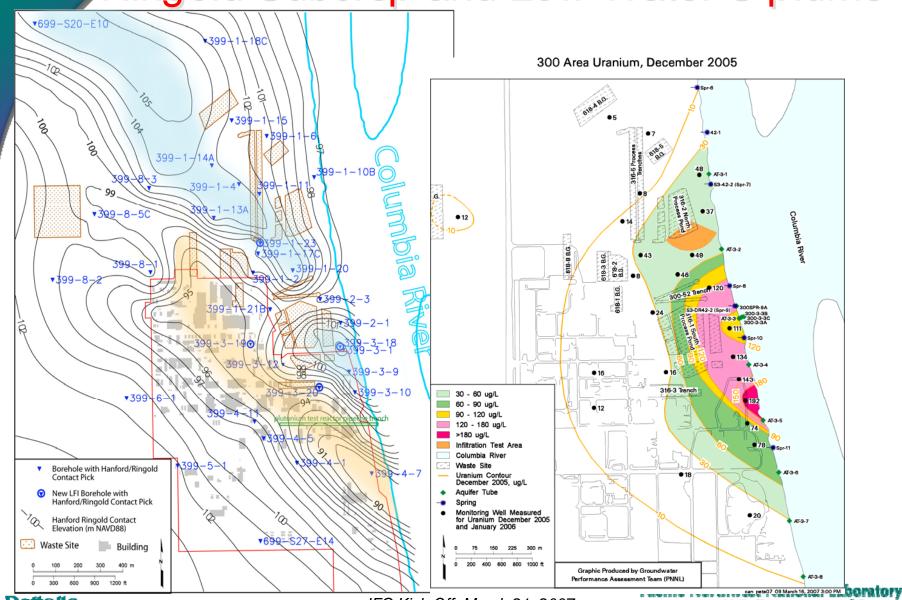
IFC Kick-Off, March 21, 2007

U.S. Department of Energy 12

ratory

How is U Partitioned in the Saturated Zone?

- Model based on desorption from contaminated sediments
- Experimentation with uncontaminated sediments underway
- Which is representative of the saturated subsurface?
 - Is U strongly retained by fines in the saturated zone; slow desorption affects mobility?
- What is the applicable K_D for the field site?
 - Does it vary laterally?
- Address by collecting field samples
 - Deepest samples at Observation Wells
 - Sediment and associated groundwater
 - Extraction of sediment U and groundwater U yields operational
 K_D
 - Use operational K_D for comparison to laboratory measurements
 - 2D variation of U and operational K_D to constrain results of transport experiments.


Infiltration

Data Summary

- Characterization Wells
 - Detailed, defined lithologic, geochemical, microbial characterization
 - Limited subaerial extent
- Observation Wells
 - Extensive characterization of subsurface
 - Limited analytes, limited resolution
 - Potential for defining solute-sediment interaction
- Combined
 - Geochemical definition of site variability
 - Baseline information for geophysical characterization
 - Accessible aquifer samples through distributed pump network
 - Alternative sampling methods undetermined

Ringold Subcrop and Low-Water U plume

Characterization Details and Questions

"Rigorous site characterization essential; physical, chemical, microbiological heterogeneity is extreme"

- Layout: Location, well density and spacing
- Aqueous sampling strategy/analytes
 - Solute, isotopes, etc., beyond U-cations-anions-carbon-pH
- Physical metering and metering density
 - Temperature, stage, gw level, velocity
- Geophysics: needs for linkage to characterization
- Solid-phase
 - Microscale, macroscale, chemical, physical for linkage to transport
- Microbiology
 - Sampling scale, scope of effort, link to EM polyphosphate
- Specific linkage to data from other projects
 - Geophysics, Groundwater, logging

