Uranium Stabilization through Polyphosphate Injection

March 21, 2007

John Fruchter (PM) Dawn Wellman (PI) Vince Vermeul (TL)

Deployment of Phosphate Amendment for In-Situ Immobilization of Uranium

- Injection of soluble polyphosphate
- Lateral plume treatment
- Uranyl phosphate mineral (autunite) formation
 - Immediate sequestration
- Apatite formation
 - Sorbent for uranium
 - Conversion to autunite
- Enhancement of MNA

Challenges to Phosphate Amendments: Rapid Precipitation Kinetics

Injection of short-chain phosphate molecules

results in rapid flocculation and precipitation of

phosphate phases

Decrease hydraulic conductivity

- Polyphosphate precludes rapid precipitation
- No measurable change in hydraulic conductivity

Pacific Northwest National Laboratory U.S. Department of Energy 3

Effect of Phosphate on Hydraulic Conductivity

	Monophosphate	Na Polyphosphate
	$Na_3(PO_4)(H_2O)_{12}$	$[Na_3(PO_4)]_3$
ΔH for Constant Head Test (cm)	24.90	24.90
Average Hydraulic Conductivity (before phosphate treatment)	0.61	0.28
Average Hydraulic Conductivity (after phosphate treatment)	0.45	0.29
% Difference:	-26.23 (±5)	$+3.57(\pm 5)$

Solution to Deployment Challenges: Use of Long-Chain Polyphosphates

- Slow reaction with water to yield orthophosphate
- Rate of hydrolysis is related to chain length
 - Time release Controllable kinetics based on to polymer length
- Rate of phosphate mineral formation is directly related to the rate of polyphosphate hydrolysis.
 - Direct treatment of uranium
 - Provides immediate and long-term control of aqueous uranium

Polyphosphate amendment can be tailored to delay formation of autunite and apatite.

Laboratory Testing Strategy

- Batch Tests
 - Amendment Optimization
 - Down selected potential polyphosphate compounds
 - Uranium Sequestration
 - Kinetics of uranium sorption on apatite as a function of pH
 - Loading density of uranium per mass of apatite as a function of pH
 - Kinetics and stability of sorbed uranium
- ³¹P NMR Hydrolysis Experiments
 - Quantified the degradation of tripolyphosphate in groundwater and heterogeneous systems
 - Homogeneous degradation
 - Aqueous HCO³⁻, Ca²⁺, Na⁺, Al³⁺, Fe³⁺, and Mg²⁺, pH = 6.5 8.0 at 23°C
 - Heterogeneous degradation
- Column Tests
 - Emplacement Efficiency
 - Amendment Transport
 - Autunite/Apatite Formation
- Single Pass Flow Through Dissolution Tests
 - Rate of autunite and apatite dissolution

Site Relevant Speciation

 HPO_{4}^{-2} $H_{2}PO_{4}^{-1}$ $H_{2}P_{3}O_{10}^{-3}$ $HP_{3}O_{10}^{-4}$ $H_{2}P_{2}O_{7}^{-2}$ $HP_{2}O_{7}^{-3}$

Pacific Northwest National Laboratory U.S. Department of Energy 7

Calcium-Phosphate Relationships

Phosphate

- Tripolyphosphate
 - Sorbs to sedimentary material (calcite, Fe and AI oxide, clay)
 - Forms fine ppt. w/ Ca
- Orthophosphate
 - Sorbs to sediment bound polyphosphate complexes increasing rate and degree of precipitation
- Pyrophosphate
 - Forms heavy, fast settling ppt. w/ Ca

Calcium – Phosphate Ratio Batch Tests

Column Testing

Test Parameters

- [P]_{ortho/pyro/tripoly}
- Calcium/phosphorus ratio
- [Ca]_{total} & [P]_{total}
- pH of amendment solution
- Column Length = 1 ft
- Cross Sectional Area = 0.005 ft²
- Porosity = 0.25
- ► Flow Rate = 1.5 L/day
- ▶ [U]_{aq} = 1000 µg/L

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 11

Assessment of Post-Test Preliminary Analysis

Pacific Northwest National Laboratory U.S. Department of Energy 12

Uranium Column Testing

Total $[P]_{aq} = 5.20 \times 10^{-3} \text{ M}$ Pyro $[P]_{aq} = 1.30 \times 10^{-3} \text{ M}$ $[Ca]_{aq} = 1.15 \times 10^{-2} \text{ M}$ Tripoly $[P]_{aq} = 2.60 \times 10^{-3} \text{ M}$ Ortho $[P]_{aq} = 1.30 \times 10^{-3} \text{ M}$ pH adj. to 7

> Pacific Northwest National Laboratory U.S. Department of Energy 13

Post-Test Preliminary Analysis

Battelle

U.S. Department of Energy 14

Uranium Immobilization

Pacific Northwest National Laboratory U.S. Department of Energy 15

Uranium Column Testing

Total $[P]_{aq} = 5.26 \times 10^{-2} \text{ M}$ Pyro $[P]_{aq} = 1.32 \times 10^{-2} \text{ M}$

Tripoly $[P]_{aq} = 2.63 \times 10^{-2} \text{ M}$ Ortho [P]_{aq} = 1.32 x 10⁻² M $[Ca]_{aq} = 1.16 \times 10^{-1} M$ pH = 7 RT = 56 min PV = 52 mL PV = 1 Ca/ 1P

> **Pacific Northwest National Laboratory** U.S. Department of Energy 16

Post-Test Preliminary Analysis

Battelk

Uranium Immobilization

Pacific Northwest National Laboratory U.S. Department of Energy 18

Total $[P]_{aq} = 5.26 \times 10^{-2} \text{ M}$ Pyro $[P]_{aq} = 1.32 \times 10^{-2} \text{ M}$ $[Ca]_{aq} = 9.98 \times 10^{-2} \text{ M}$ pH

 $\begin{array}{ll} \text{P}^{-2} \mbox{ M} & \text{Tripoly} \ [P]_{aq} = 2.63 \ x \ 10^{-2} \ \mbox{M} \\ \text{Ortho} \ [P]_{aq} = 1.32 \ x \ 10^{-2} \ \mbox{M} \\ \mbox{pH} = 7 & \text{RT} = 56 \ \mbox{min} & \text{PV} = 1 \ \mbox{Ca} / \ 1P \end{array}$

Pacific Northwest National Laboratory U.S. Department of Energy 19

Post-Test Preliminary Analysis

Uranium Immobilization

Pacific Northwest National Laboratory U.S. Department of Energy 21

Acknowledgements

Funding for this project was provided by the U.S. Department of Energy, Office of Environmental Management, EM-20 Environmental Cleanup and Acceleration.

PNNL Laboratory Team

- Emily Richards
- Kent Parker
- Elsa Rodriguez
- Eric Pierce

Uranium Stabilization through Polyphosphate Injection: Field Studies

Pacific Northwest National Laboratory Operated by Betelle for the U.S. Department of Energy

