Hanford 300 A IFRC

New Results from the Hanford Integrated Field Research Challenge (IFRC)

John M. Zachara and the IFRC Research Team Pacific Northwest National Laboratory, Richland, WA

http://ifchanford.pnl.gov

Hanford IFRC Meeting February 24, 2009

Pacific Northwest NATIONAL LABORATORY

PNNL-SA-64863

Presentation Focus and Content

- A little background
- Completed saturated zone experimental site
- Initial results of field and laboratory characterization
- Evolving experimental plans and rationale
- Challenges and opportunities

Hanford's 300 A Uranium Plume

- Large volumes of process waste from fuel fabrication resulted in extensive U groundwater contamination
- Highly contaminated waste pond sediments excavated, Cu- and Ucontaining vadose zone sediments remain
- MNA selected as an interim remedy for groundwater contamination in 1996
- Persistent U groundwater contamination remains above regulatory limits
- Complex seasonal concentration trends associated with river stage changes and WT rise and fall
- Investigations ongoing to understand hydrogeochemical behavior of VZ-SZ system and select appropriate remedy

Hypothesized Vadose Zone Release Model

Hanford Integrated Field Research Challenge Science Theme

Multiscale mass transfer processes influencing sorbed contaminant migration

- Mass transfer is controlled by diffusion, and is influenced by the path length, tortuosity, thickness, and surface charge of immobile, water-filled pore space.
- It controls contaminant release at the particle scale from intragrain domains to porewater, and at the aquifer scale from fine-textured to coarse-textured aquifer facies.
- Kinetic behavior results, as well as long-term contaminant resupply after remedial activities.

Associated Practical Issues

- 1. Accurate projection of dissipation times for groundwater plumes
- 2. Optimal delivery of remediation reactants
- 3. Effectiveness of remediation

South Process Pond – Pit #2 – From ERSP

Significant ERSP research on 300 A sediments (~10 papers)

- molecular speciation of adsorbed and precipitated species
- adsorption/desorption and dissolution kinetics
- bulk, surface, and microscopic mineralogy
- mass transfer behavior and models
- remaining mysteries

Mass Transfer: Importance, Modeling, and Scaling

Hanford IFRC Site Concept

- Wells spaced 10 m to allow cross-hole geophysical interrogation for inter-well properties determination.
- Injection experiments (10⁵ gallon) in the 6 m saturated zone under different seasonal gradients using site groundwaters.
- Passive experiments will exploit natural gradients and WT fluctuations
- Continual water level monitoring at 12 locations to quantify boundary conditions.

IFRC Site and SPP2

Easting (m)

- 60 m site with 37 wells (extensive borehole documentation and logging, reports on web)
- Rigorous geophysical and hydrologic field site characterization and measurements (described by "Plan")
- Carefully selected laboratory measurements on many sediments retrieved from wells (geostatistical relationships)
- Focus on upscaling of microscopic reaction information (from ERSP) and identifying physical/geologic features causing kinetic behavior at m+ scales
- Attempt to characterize and model multi-process effects at multiple scales.

Example Compilation Borehole Summary Log for Well 399-2-9 (C6186)

Pacific Northwest NATIONAL LABORATORY

Hydrologic/Groundwater Characterization

Described in Plan on website

Hydrologic

- Electromagnetic borehole flowmeter (EBF) surveys (vertically, temporally)
- Constant rate injection experiments (enable vertical K profiles)
- Solute tracer injection experiments
- Geochemical
 - Quarterly all well survey
 - Monthly 12 well survey (9 ML + 3 FS)
 - Seasonal select MLS deployment (early March 2009)
 - Comprehensive passive experiment (April-June 2009)
 - Downhole monitoring of T and EC

Electromagnetic Borehole Flowmeter (EBF) Testing Ambient and Dynamic Vertical Flow Profiles, Well 399-2-15

- Both ambient and dynamic tests conducted
- Net flow corrected to account for effects of ambient flow
- Incremental contribution of each depth interval to flow used to estimate relative K

NATIONAL LABORATORY

Selected Examples of EBF Profiles

Hydraulic Conductivity from Short-Duration Constant Rate Injection Testing

Pacific Northwest

Results of November 2008 Tracer Test for Hydrologic Characterization

Pacific Northwest

Tracer Response in Northern Multi-Level Well Cluster

10

n

10000

- Tracer arrival and elution significantly lagged in middle zone
- Consistent with EBF results
- Earliest arrival in lower zone closely followed by upper zone
- **Multi-well Cluster** _____ 2-26 (shallow) 35 ____ 2-28 (medium) 30 Bromide (mg/L) **—** 2-27 (deep) 25 20 15 10 5 10000 20000 30000 40000 0 elapsed time (min) 106.00 80 2-26 Bromide 70 105.75 River Ē 60 105.50 Bromide (mg/L) 50 105.25 evation 105.00 40 ш 30 104.75 River 20 104.50

20000

elapsed time (min)

30000

- Upper zone well exhibits stronger tracer response to river stage variability than lower zone – more connected
- This difference in connectivity likely explains the strong ambient flow observed during EBF testing

Pacific Northwest NATIONAL LABORATORY

40000

104.25

+ 104.00

Well Cluster 1

Shaded Relief of Hanford Ringold Contact

Sulfate in IFRC Well Waters

Uranium Isotopes in 300 A Groundwaters

Sediment Characterization Strategy

Based on field-scale surface complexation RTM

SOH +
$$UO_{2(aq)}^{2+}$$
 + $CO_{3(aq)}^{2+}$ = SOHUO₂HCO₃
[SOH]_T, [U]_T, [CO₃]_T, K, k

and 3-D properties/parameter distributions

<u>Transport properties</u>
K_{sat}, porosity, density

Reaction parameters K, k, SOH, CO₃²⁻

<u>U distribution</u> U(VI)_{ads}, U(VI)_{aq}

Sediment Characterization Approach

- Interpolation between boreholes
 - Down-hole geophysical measurements (uncharacterized boreholes)
 - Porosity, density, EC, MS, K-U-T
 - Cross-hole measurements (intervening space)
 - Radar, ERT
 - Correlations between geophysical measurements and physical/chemical properties (SFA)
- Direct measurements on select cores/samples
 - Physical
 - PSD [200], SA [50]
 - Chemical
 - U_T, U_{ads}, U_{des}, K_d-SGW1&2, AAO_{Fe(III)} [200]
 - K, k [select, establish correlations with properties]

Downhole Electrical Conductivity Measurements

Schematic of ERT / Monitoring Wells

- Electrodes spaced at 60 cm (2 ft)
- Electrode length approx 10 cm (4 in)
- Electrode material 316 stainless steel
- Single wire connections to electrodes
- Wires run on outside of PVC well pipe
- Thermistors placed between electrodes
- Wire wrap PVC from 106-98 m elevation
- Tube capped at bottom
- Well head ~0.6 m (2 ft) above ground
- Central connector/DAQ box at top of wellhead
 - Heat dissipation unit (HDU), time- domain reflectrometry (TDR) probe and porous cup solution sampler at multiple depths on 5 wells around infiltration site

Calibrating Electrodes in the IFRC Well Field

IFRC ERT Inversion Results

Relationship Between Total and Bicarbonate Extractable U(VI)

Bicarbonate Extractable U(VI) from Three Boreholes

Forced U(VI) Desorption for Kd Measurement from Well 3-31 Sediments

Lability of Adsorbed U(VI) in IFRC Site

Fraction desorbed after six washings

Influence of Desorption Cycle on <2mm Kd for Core 2-26

Extrapolated Groundwater U(VI) Concentration from First Desorption Event

Ex-situ/In-Situ Reaction Parameters [PNNL SFA]

Intact Column Studies

- RT experiments at 10'/d, 3 cores from different aquifer depths
 - A-desorption, B-tracer, C-adsorption/desorption SGW-1, D-hydrologic properties

Deconstruction

- psd, SA (< 2 mm), < 2 µm mineralogy
- Low [U(VI)] isotherm (< 2 mm)</p>
- Mass transfer parameters by flow cell (< 2 mm)</p>
- AAO Fe(III) (< 2 mm)</p>
- Upscaled modeling
 - SC-DR-DP (PFBA)

U(VI) Desorption and Adsorption/Desorption from Intact IFRC Core 3-26/35.8-36.8'

C6203

3-26/C/35.8'-36.8'

Pacific Northwest

Particle Size of Coatings on Gravel (32 mm)

Pacific Northwest

Tracer Behavior and U(VI) Desorption During Phase B

Field Experimental Plan is in Progress

New characterization data will allow completion

Expected Experimental Campaigns

- Multi-tracer, cold water injection (March, 2009)
- Passive during rising and falling water table (May July, 2009)
- Desorption U(VI) injection (September, 2009)
- Adsorption U(VI) injection (March, 2010)
- Passive during rising and falling water table (May July, 2010)
- In-situ microbiologic activity (August, 2010 February 2011)
- Isotopic exchange (March, 2011)

Defining Heterogeneities in Hydrologic Properties and Flow

Pacific Northwest

Concept for Passive Groundwater Experiments

Uranium Injection Plumes Simulated with Two Models

Pacific Northwest

U.S. DEPARTMENT OF ENERGY

Important Progress

- State of the art well field and monitoring system installed and tested
- Extensive hydrologic testing completed that has modified the site hydrologic model
- Significant progress made toward the site 3-D geostatistical model ("Characterization Plan")
 - Laboratory chemical, physical, and electrical measurements
 - Surface, downhole and cross-hole geophysical measurements
 - Inversion modeling and geostatistical analysis
- Modeling Plan nearly completed
 - Data collection sequences
 - Sequential modeling goals
 - Roles and responsibilities
- High quality samples obtained for microbiologic characterization that have shown surprising results
- Established collaborative strategy and experiments with PNNL SFA
- Ready for the experimental program to begin in March

Challenges and Opportunities

Challenges

- Experimental planning for maximum scientific and programmatic impact given system hydrologic complexities
- Vertical resolution of solute breakthrough in the IFRC well-field
- Maximizing the contribution of the modeling team
- Meaningful collaborations with EM

Opportunities

- Original mass transfer hypothesis holds with qualification
- Site is a "gold-mine" for coupled process, "upscaling", and systemslevel research
- Site infrastructure will support many experiment types, has sophisticated attributes
- Unique field laboratory for study of contaminant migration and microbiology of the groundwater-river interaction zone

Linkage to Site Remediation and Closure

- Operational model for infusion of DOE fundamental science into the closure mission
 - In-ground contaminant status and behavior
 - Understanding of processes and complexities of specific sites
 - Evaluation and testing of new models and measurement techniques
 - Knowledge to reduce uncertainty
 - Websites updated every 6 mo. to include new findings and publications
- 300 A site is representative of Hanford River Corridor locations
 - Applicability of conceptual and numeric models to other locations
- Scientific context for evaluation of remediation strategies and concepts
 - Critical characterization needs
 - MNA versus active approaches
 - Expectations for long-term remediation efficiency

IFRC Well-Field Cross Section

IFRC.xsecA

Hourly, Daily Average, and Monthly Average River Stage at the 300 Area in 1996

IFRC Modeling and Parameterization Workflow

47

Geo-/Petro- Physics Workflow

Distribution Coefficients for Well Sediemts

