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Definition of Mass Transfer

P Kinetic mass exchange between mobile and
Immobile domains in subsurface sediments.
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Biogeochemical reactions: dissolution/precipitation
and sorption/desorption reactions;

Diffusion in intra-aggregate and intragrain domains,
grain fractures, side pores, and microporous grain
coatings;

Diffusion or slow advection in low permeability
zones: clay or silty clay lens and layers.

The coupling of above processes
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Significance of Mass Transfer

Enhances plume spreading and causes chemical
disequilibrium.

Slows effective contaminant desorption and dissolution
rates.

Limits the bioavailability or chemical reactivity of sorbed
constituents.

Increases times needed for remediation.

Resupplies contaminants to subsurface waters that have
been "cleaned".

Complicates remediation strategies based on contaminant
desorption, reaction, and immobilization.
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ss Transfer in Homogeneous Systems

Column experiments were performed to investigate mass transfer in
homogenized unsieved sediment and its < 2 mm fraction.

Small Column (< 2 mm grains) Large Column (80 kg unsieved materials)

2.2 cm
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diment Size and U(VI) Distribution

Size Range (mm) Mass Fraction (%) Total U(VI) (nmol/g)

Cobbles
>12.5 74.5 <22
2.0-125 17.2 <19
Sand
1.0-2.0 2.64 26
05-1.0 2.34 <18
0.25-0.5 0.78 <21
0.149 - 0.25 0.33 37
0.106 — 0.149 0.19 <23
0.053 - 0.149 0.20 <23
Silt+Clay
<0.053 1.78 125
Sand+Silt+Clay <2.0 8.30 47.81
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ss Transfer in Small Columns (<2mm)

Br breakthrough U(V1) Desorption
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ual-Domain Mass
Column (Unsieved)
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»  Tracer breakthrough curves revealed dual domain mass transfer properties;
»  Mass transfer is species (tracer)-dependent.




V1) Mass Transfer in Large Column
(Unsieved)
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»  Multi-scale mass transfer processes superimposed with increasing scale.
» Importance of selection of tracers in exploring physical mass transfer properties.




Summary

®» Mass transfer is scale-dependent. Mass transfer processes
at different scales will superimpose as the scale increases;

» Uranium reactive transport in 300A will be controlled by
multi-scale mass transfer processes;

» Characterization, scaling, and integration of multi-scale
mass transfer processes are challenging, but necessary to
understand and project U(V1) reactive transport at the field
scale.
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Summary (continued)

» The development of an effective remediation scheme for the
300A U plume will require explicit consideration of mass
transfer

e U(VI) desorption rate and inter-facies mass transfer

e mass transfer of contaminant U(VI) and injected PO,*- to
conincident flow regions for reaction

e long-term reactivity of P.
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Upscaling of Mass Transfer Kinetics

Transport Equation:
oC" oq"
0 —+(1-6 '
"ot d=6n)e. ot

Mass Exchange Between Mobile and Immobile Domains:

ac_im aq_im .
0. —+(1-6 —=4_p(C"-C"
m at ( m )pS at |mﬂ( | | )

Mobile Domain Multi-Rate Equation:

=60,AD(C")-6,,6(C"-C") i=1,2 ..,N

Oq.’" < | | f
[ f(aNO™ — a™)dg f(g): 1ognorma m . From surface
ot -([ (@)(Q" a7 (@) distribution ' - complexation
Immobile Domain Multi-Rate Equation:

oq." lognormal

o f im L im : im . From surface
ot :j F@@Q" -a"da  T(@): gipripution Q" complexation
0

»  Total site density was calculated based on the mass weight of the reactive
size fraction in the large column;

»  Sorbed U(VI) was splitted in mobile and immobile domains based on their
porosity values.
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rameters in Modeling U(VI) Desorption in
Column Experiments

Parameters Symbol Unit SC-1 SC2 LC
Column Length L cm 10.5 10.5 80
Pore velocity Vv cm/h 860 7.75 3.52
Dispersion coefficient D cm2/h 1525 3.64 46.52
Porosity 0 / 041  0.46 0.32
Soil bulk density Pb kg/L 156 142 1.88
Immobile porosity Oim / 0.00 0.00 0.064
Logarithm mean rate p log(hy  -9.99 -9.99 -9.99
Standard deviation o log(hy 266 266 2.66
Two domain mass exchange PFBA Tritium Br u(vl)
rate constant (h™) 1.45x10% 4.28x10% 3.87x10% 1.45x107
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