Smear-zone geochemical & hydrologic model:

On-going experiments & products

IFRC All Hands Meeting January 19, 2011

Doug Kent and Deb Stoliker U. S. Geological Survey

Individual samples and Site-Wide Composite (SWC)

$ \begin{array}{c} 2^{-9} \\ \overline{\bigcirc}^{2-8} \\ \overline{\bigcirc}^{2-7} \\ \overline{\bigcirc}^{2-26^{\circ}} \\ \overline{\bigcirc}^{2-12} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \overline{\bigcirc}^{-10} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	0 ²⁻²⁵
Q ²⁻¹¹ Q ²⁻¹⁴ Q ²⁻¹⁸ Q ²⁻¹⁸ Q ²⁻¹⁷ Q ²⁻¹⁷ Q ²	19 0 ²⁻²² x 2-29 -21 2-30 2 -24
2S 3S 3S 3S 3S 3-25 3-25 3-25 3-25 3-25 3-25 3-25 3-25	0 ²⁻²³ 3-29
o ³⁻²⁴ o ³⁻²⁷ ● ³⁻²⁶	GW Monitoring Well Clusters Shallow Intermediate Deep

2-10

Sample	Elevation Range (m above sea level)
2-26	105.8-107.3
2-27	106.1-107.3
2-30	106.4-107.3
2-31	106.5-107.3
3-31	106.7-107.6
3-32	106.3-107.3
SWC	102.6-108.0

Static Batch Reactors Surface Complexation Modeling

 $>SOH + UO_2^{2+} + 2H_2CO_3^* =$ 1.2 >SOUO₂(CO₃HCO₃)²⁻ + 4H⁺ Measured Ο Ο 1.0 0 Modeled Surface \bigcirc **WSOS** Log K Sample Area / DF 0.8 (m^2/g) Log K_d (L/kg) 12.5^{*} -11.72 ± 0.04 All 4.0 0.6 SWC-1 14.1 ± 0.9 -11.73 ± 0.11 2.8 0.4 11.7 ± 0.6 -11.78 ± 0.11 2-26 2.4 \bigcirc 13.4 ± 0.9 -11.61 ± 0.12 2-27 2.1 0.2 2-30 2.2 13.3 ± 0.9 -11.69 ± 0.12 2-31 12.1 ± 0.6 -11.60 ± 0.11 2.5 \bigcirc \bigcirc 0.0 2 1 3 4 5 6 7 3-31 11.7 ± 0.6 -11.80 ± 0.13 1.6 0 Alkalinity (meq/L) 3-32 11.5 ± 0.6 -11.88 ± 0.11 2.0

Stoliker et al., submitted; Yin et al. WRR, in press (SWC)

Static Batch Reactors Surface Complexation Modeling

Static Batch Reactors Bulk Water Chemical Variations

SWC, 100 g/L, 1 meq/L

SWC, 1000 g/L, 4 meq/L

Flow-through Batch Reactors

Carbonate Extraction - SWC Size Fractions

Experiment vs theory

Ratio of initial rates	Measured	Multi-rate SCM		
AGW4/AGW2	2.5	2.2		
Ratio to initial rate for 1-2 mm fraction				
0.5-1 mm	1.6	6.1		
0.25-0.5 mm	4.6	7.1		
0.125-0.25 mm	5.1	9.5		

Conclusions

- Differences in U(VI) adsorption equilibrium constants determined by SCM vary by a factor of 2 Differences in measured surface area vary by a factor of 1.3
 - In static batch reactors, U(VI) adsorption equilibria is reached after 500-1000 h though chemical conditions continue to change for many thousands of hours
- In flow-through batch reactors, U(VI) desorption rates increase with increasing carbonate concentration
- In flow-through batch reactors, *initial* U(VI) desorption rate increases with decreasing particle size

Future Work

- Complete data set using flow-through batch reactor for all SWC size fractions at 1 meq/L
 Non-reactive tracer (Br) pulse to determine residency time for modeling
- Expand the range of chemical conditions to represent field-relevant alkalinity, pH, and [Ca]
- Uranium adsorption experiments
- Modeling

 More targeted experiments with upper saturated zone material from specific wells (limited quantities)

Carbonate Extraction - SWC Size Fractions

