IFRC Project Meeting: Adaptive mesh refinement and plume scale modeling

Peter C. Lichtner

Los Alamos National Laboratory

IFRC Workshop, Richland, WA January 19–20, 2011

Panford 300 Area Plume-Scale Model

3 APPLICATION OF AMR TO IFRC SITE MODEL

Advances in PFLOTRAN

- Non-diagonal permeability tensor using MFV
- Solute Age
- AMR
- Multiple Continuum (in progress)

Recent Advances in PFLOTRAN

MFV (Mimetic Finite Volume) Permeability Tensor

Tracer Age

• Tracer Concentration C:

$$\frac{\partial}{\partial t}\varphi \boldsymbol{s}_{l}\boldsymbol{C} + \boldsymbol{\nabla}\cdot\left(\boldsymbol{q}\boldsymbol{C} - \varphi \boldsymbol{s}_{l}\boldsymbol{D}\boldsymbol{\nabla}\boldsymbol{C}\right) = \boldsymbol{Q}$$

• Tracer Age A:

AMR (Adaptive Mesh Refinement)

- Put nodes only where needed to maintain accuracy while reducing the number of degrees of freedom (orders of magnitude reduction in DOFs compared to finest grid)
- Significant saving in computation cost and memory
- Track moving fronts
- SAMR (Structured Adaptive Mesh Refinement) represents a locally refined mesh as a union of logically rectangular meshes
- Disadvantages: not easy to implement; need special solvers (multilevel)

SAMRAI: Structured Adaptive Mesh Refinement Application Interface

• Parallel C++ SAMR Framework

- Patch-based
- Multiple refinement levels
- Parallel data transfer between refinement levels
- Uniform Local Grid
- Different data representations: cell, face, node, edge, ...
- Jacobian-Free FV methods
- Multilevel solvers
- Parallel I/O using HDF5
- Visit parallel visualization tool
- Interface between PFLOTRAN F90 and C++
- Interface between PETSc and SAMRAI

Recent Advances in PFLOTRAN

PFLOTRAN AMR Implementation

Patch-based SAMRAI grid

SAMRAI Framework Mesh Hierarchy (Rich Hornung, LLNL)

Structured mesh hierarchy defined using "index spaces"

PCL (LANL)

Becent Advances in PELOTRAN

5-Spot Well Pattern: Refinement Levels

10/26

Recent Advances in PFLOTRAN

5-Spot Well Pattern: Comparison of Pressure Field

user: lichtner Sun Jan 16 14:50:51 2011

Plume & Site-Scale Models

• Hanford 300 Area Plume-Scale Model

- Time scale: years
- Domain size: 900 m \times 1300 m \times 20 m
- High resolution grid: 5 m \times 5 m \times 0.5 m
- Nodes: 1.872M

• IFRC Site-Scale Domain

- Time scale: hours
- Domain size: 80 m \times 80 m \times 20 m
- Grid Size: ~ 1 m

Hanford 300 Area Plume-Scale Model

Plume-Scale Conceptual Model

IFRC Project

Hanford 300 Area Plume-Scale Model

Hanford 300 Area Modeling Domain

- Domain size: 900m×1300m×20m
- Grid size: $\Delta x = \Delta y = 5m$ $\Delta z = 0.5m$
- Flow: $N_{dof} = 1.872M$ = $180 \times 260 \times 40$
- Reactive Transport: $N_{dof} = 28.08M$ = $180 \times 260 \times 40 \times 15$

Hyporheic Zone Conductance: Predicted and Measured Head at Well 399-3-12

Hanford 300 Area Plume-Scale Model

U(VI) Plume: Multirate Model

PCL (LANL)

Los Alamos

U(VI) Plume: No Sorption

Predicted U(VI) & H₂O Flux to Columbia River

Heterogeneity

PCL (LANL)

Los Alamos

Global Mass Conservation: Non-Labile Leach Rate

50 kg/year U(VI) flux into Columbia River: $\mathcal{R} = V \cdot \mathcal{L}$

IFRC Site

Modeling Site-Scale IRFC Experiments using Plume-Scale Domain

- Embed IFRC site in plume-scale domain using AMR
- Boundary conditions:
 - Account for hourly river fluctuations
 - Triangulate data from wells 399-8-1, 6-1, & 4-1
- Multicomponent chemistry: Na-K-Ca-Fe-Mg-Br-N-CO₂-P-S-CI-Si-U-Cu-H₂O (~15 primary species)
- Incorporate highly heterogeneous sediments (fine sand, silt, coarse gravels, cobbles)
- Include multiscale processes (µm-m)

Application of AMR to IFRC Site Model

IFRC Site Model: SAMRAI Grid

SAMRAI Grid Statistics

GRID STATISTICS	N _{dof}
Total DOF:	939,600
Total Relative Number of DOF:	0.0078
DOF, level 3:	655,360
DOF, level 2:	46,080
DOF, level 1:	7,040
DOF, level 0:	231,120
Grid points, level 3:	655,360
Grid points, level 2:	128,000
Grid points, level 1:	23,040
Grid points, level 0:	234,000

Application of AMR to IFRC Site Model

Tracer Injection Plume at Well 399-2-9

user: lichtner Sun Jan 16 10:05:48 2011

Future

- Apply AMR to IFRC experiments with concurrent river stage and inland well data
- Use site-scale IFRC experiments to calibrate plume-scale model
- Implement heterogeneous U(VI) distribution, permeability and porosity fields
- Estimate non-labile U(VI) leach rate
- Use multiple continuum model explicit diffusion pathway with sorption/mineral dissolution/precipitation

