River Induced Wellbore Flow Dynamics in IFRC Long-Screen Wells: Assessment of Mitigation Strategies

IFRC Project Meeting January 19-20, 2011

Conceptual Model of Wellbore Flow

- Wellbore flow in long-screen wells at the IFRC site is related to:
 - Geohydrologic conditions upper and lower high K zones separated by lower K zone
 - River hydrodynamics
 - Well construction long-screen wells allow intercommunication between high K zones
 - Differing degrees of connectivity between the upper and lower high K zones and the river, resulting in head differences that drive flows upward or downward

- Temporally variable fluctuating river boundary
- Spatially variable can be used to infer river connectivity and geologic structure between wellfield and river

NATIONAL LABORATORY

Ambient Wellbore Flow Characterization

- First identified during initial site characterization that included ambient and dynamic EBF profiling
 - Potential for impacts to aqueous sampling results was recognized, tracer and passive experiments required to quantify impacts

Spatial Distribution of Ambient Wellbore Flow

Ambient wellbore flows measured at multiple locations across the IFRC site (time discrete)

- Both direct and inverse correlations observed
 - (-) Inverse correlation indicated
 - (+) Direct correlation indicated
- Generally consistent with spatial distribution of observed concentration variability during U desorption experiment
- One plausible CM for observed spatial variability is associated with geologic controls and their impact on hydraulic connection to the river
 - Western wells lower zone predominantly connected to river through paleochannel
 - Eastern wells lower zone less connected due to a high in the H/R contact (not shown)

Temporal data at select locations

Temporal Evaluation of Wellbore Flow at Wells 399-2-21 and 399-2-22

Ambient Wellbore Flow at Well 399-2-21

Ambient Wellbore Flow at Well 399-2-21 (cont.)

- Water-level elevations in the adjacent multilevel well cluster were used to calculate head differences between the upper and lower high K zones
 - As expected, Δ h and flow are highly correlated

 Δh of ~2 cm resulted in wellbore flow of ~ 4 LPM

Implications for Aqueous Monitoring

- Direct measurement of wellbore flows and their impact on aqueous U concentrations during passive U desorption experiment
 - Decreases in U concentration associated with periods of upward wellbore flow
 - Magnitude of variability observed in long-screen well consistent with depth discrete concentrations

Mitigation Approach

- Objective: Minimize intercommunication between upper and lower high K zones
 - Install inflatable packer(s) to increase hydraulic resistance within wellbore
 - Seal entire lower section of the well screen using coated bentonite pellets
 - More aggressive approach required?

Performance of Single 30-in Packer (399-2-21)

No Packer Installed

Single Solinst® Packer Installed

Mitigation Trials in Well 399-2-21: EBF and Water-level

Mitigation Trials in Well 399-2-21: EBF and U Concentration

Tracer Intercommunication Test Results

- Dual 30-in packer string set in well 399-2-21
- Upper zone continuously pumped (purge rate of ~ 1gpm)
- 1000 mg/L Cl⁻ solution injected into lower zone at 67 mL/min for 137 min.

Mitigation Trials in well 399-2-22: EBF and Water-level

Mitigation Trials in well 399-2-22: EBF and \triangle Head

Upper Zone Ambient/Dynamic EBF Profiles

Bentonite Plug Specification (uniform plug top at 40 ft bgs?)

Plans for Upper Zone Characterization

- Conduct ambient and dynamic EBF profiling throughout the wellfield
 - Perform at multiple water table elevations to provide different scales of interrogation
 - Three new upper zone wells have screens that extend high enough to support 3 scales of interrogation (low, mid, and high water table conditions)
 - Most existing wells will only support low and mid WT conditions
- Conduct constant-rate injection tests in a subset of wells distributed throughout the wellfield
 - Same distribution as previous hydraulic testing campaign?
 - 14 wells distributed throughout wellfield
 - Test all wells?

Recent and Planned Drilling

Sampling and Well Construction

Far-Field, Water-Level Monitoring Wells (4)

