

#### Integrated Corn Cellulose Biorefinery

Biomass Research and Development Technical Advisory Committee Johnston, IA May 21, 2008

Mark D. Stowers, Ph.D. Vice President, Research and Development POET

mark.stowers@poetenergy.com www.poetenergy.com





# Project LIBERTY



- Converting Emmetsburg, IA plant to an integrated biorefinery
- Over \$200 million capital investment
  - Awarded DOE grant up to \$80 million
- Will produce 125 million gallons of ethanol
  - 25 million from cellulosic feedstock
- Cellulosic feedstocks are cobs and corn fiber
- Multiple synergies with corn and cellulose model

#### Project LIBERTY



- Expansion to 100 million capacity
- Corn Fractionation
- Solid Fuel Boiler
- Anaerobic Digestion
- Cellulosic Ethanol Plant



#### Research and Development



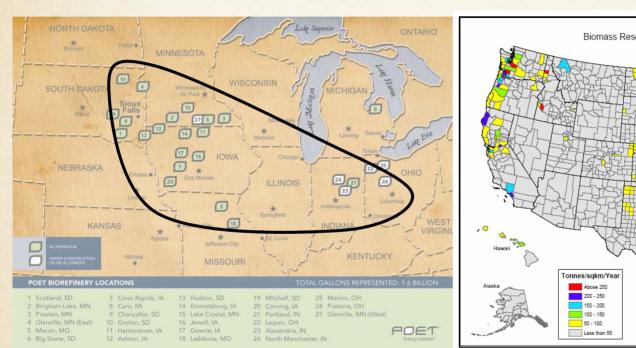
- Feedstock Collection, Storage and Processing
- Process Development and Optimization
- Scale Up
- Construction

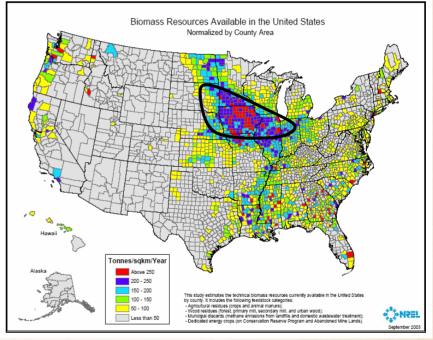
#### Cellulosic Ethanol: Starts with Corn












#### Corn and Cellulose







#### Why Cobs?





- Abundant supply
- Low level of nutrients
- More carbohydrate
- More than 2X the density of corn stalks
- Collectible
- Sustainable
- Potential high yield
- Existing market

#### The Challenge



- Small scale business today
- Limited farm machinery available
- Not much experience with cob storage
- A lot to learn about how to process
- How do we engage farmers, OEMs and systems suppliers to meet our goals?

#### Collaborators



















JOHN DEERE

Energy inspired. Doetenergy.com



# Cob Field Days 2007





### Grain Harvest 2007 - Hurley, SD





# Grain Harvest 2007 - Hurley, SD





#### First Generation: Corn Cob Mix





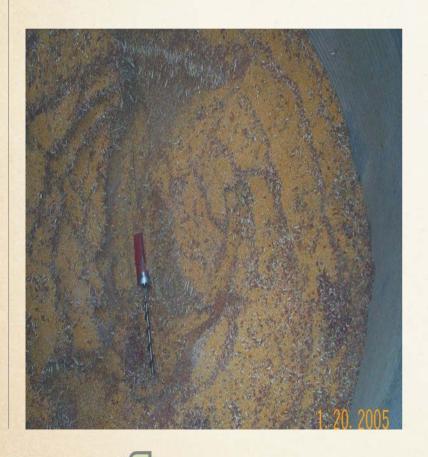
#### Field Test '07 - CCM Package





#### Co-mingled Corn Grain and Cobs (CCM)




The corn & cob mixture is unloaded into common hopper bottom trailers & hauled to the farm, plant or separation area.



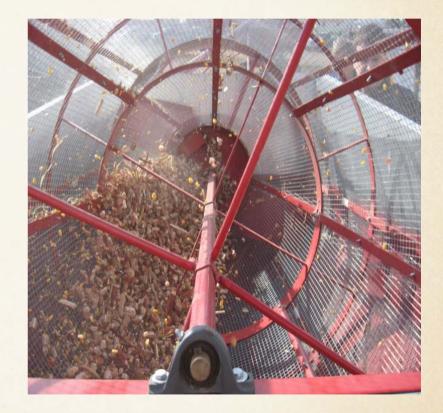
### **Storage Options**



CCM can either be separated in the field or hauled to a pile for further processing.








# **Separation Options**



The Corn & Cob mix can be separated at the field, farm or plant.





# The "Cob Caddy"







### Cob Caddy Dump to "Cob Cart"





# Things Work





### Prototype Biomass Harvester





Source: S. Birrell, Iowa State University

Energy inspired." poetenergy.com

# Prototype Biomass Harvester





Source: S. Birrell, Iowa State University

Energy inspired." poetenergy.com

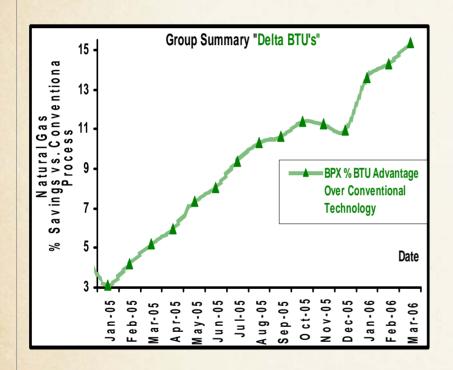


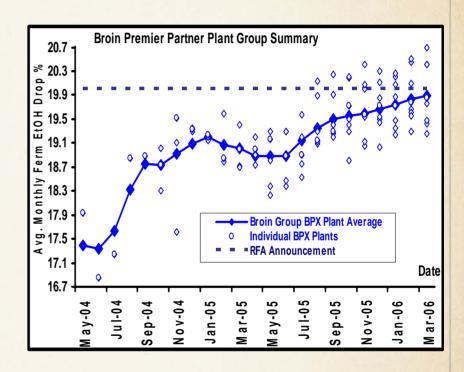


#### **Enabling Technologies**



- Corn Fractionation
- Raw Starch Hydrolysis
- Feedstock Collection
- Process Strategies
- Alternative Energy


# POET Research Center Scotland, South Dakota

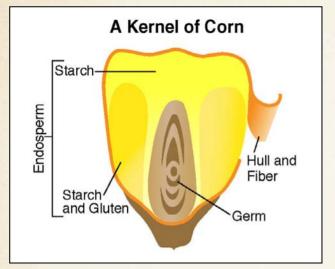







# BPX






Raw starch hydrolysis process without the need for cooking















Dry corn fractionation producing endosperm, fiber and germ







www.dakotagoldmarketing.com





#### DAKOTA GOLD HP™ Dried Distillers Grains

| PROTEIN, FAT, ENERGY, FIBER      |                      |                                         |                     |  |  |
|----------------------------------|----------------------|-----------------------------------------|---------------------|--|--|
| ITEM                             | VALUE <sup>1,2</sup> | ITEM                                    | VALUE <sup>12</sup> |  |  |
| Dry Matter, %                    | 92.2                 | NE, Mcal/cwt³                           | 103                 |  |  |
| Crude Protein, %                 | 43.0                 | NE <sub>M</sub> , Mcal/cwt <sup>3</sup> | 100                 |  |  |
| Crude Fat, %                     | 4.3                  | NE <sub>G</sub> , Mcal/cwt <sup>3</sup> | 68                  |  |  |
| TDN, %                           | 89.2                 | ADF, %                                  | 8.6                 |  |  |
| ME - Swine, Kcal/lb3             | 1842                 | NDF. %                                  | 18.1                |  |  |
| ME - Poultry Kcal/b <sup>3</sup> | 1328                 | Ash %                                   | 21                  |  |  |

| AMINO ACIDS, % |                      |               |                      |  |  |
|----------------|----------------------|---------------|----------------------|--|--|
| ITEM           | VALUE <sup>1,2</sup> | ITEM          | VALUE <sup>1,2</sup> |  |  |
| Alanine        | 3.89                 | Lysine        | 1.43                 |  |  |
| Arginine       | 1.30                 | Methionine    | 1.21                 |  |  |
| Aspartic Acid  | 3.17                 | Phenylalanine | 2.22                 |  |  |
| Cystine        | 1.60                 | Proline       | 4.14                 |  |  |
| Glutamic Acid  | 8.35                 | Serine        | 2.27                 |  |  |
| Glycine        | 1.59                 | Threonine     | 1.64                 |  |  |
| Histidine      | 1.40                 | Tryptophan    | 0.50                 |  |  |
| Hydroxyproline | 0.13                 | Tyrosine      | 1.94                 |  |  |
| Isoleucine     | 1.64                 | Valine        | 2.31                 |  |  |
| Leucine        | 5.52                 |               |                      |  |  |
|                |                      |               |                      |  |  |

| MINERALS      |                      |                |                      |  |  |
|---------------|----------------------|----------------|----------------------|--|--|
| ITEM          | VALUE <sup>1,2</sup> | ITEM           | VALUE <sup>1,2</sup> |  |  |
| Calcium, %    | 0.02                 | Sulfur, %      | 0.82                 |  |  |
| Phosphorus, % | 0.50                 | Copper, ppm    | 5                    |  |  |
| Sodium, %     | 0.13                 | Iron, ppm      | 61                   |  |  |
| Potassium, %  | 0.38                 | Manganese, ppm | 7                    |  |  |
| Magnesium, %  | 0.13                 | Zinc, ppm      | 72                   |  |  |

- 1 All Values: Dry Matter Basis.
- Average of approximately 10 New Crop 'DS-'D6 samples sent to Midwest Laboratories, Omaña, Nebraska.
- 3 All energy values determined experimentally assume following values for corn: NE<sub>L</sub> = 91; NE<sub>M</sub> = 99; NE<sub>S</sub> = 65; ME - S = 1750; ME - P = 1770.

2006-2



FOR MORE INFORMATION, CONTACT US AT 888.327.8799 • 605.332.2200 • 605.332.2266 (fax)



CONFIDENTIAL

### Cellulosic Ethanol Technologies



#### Pretreatment

- Acid, Alkaline, Temperature, Oxidation
- Solubilize lignin and hydrolyze cellulose and/or hemicellulose
- Saccharification
  - Cellulose and hemicellulose hydrolysis
- Fermentation
  - Separate C6 and C5 fermentations
  - Mixed sugar fermentations

#### **Alternative Energy**



- Lignin incineration and steam generation
- Biogas and process water production





#### Project LIBERTY, Emmetsburg, IA Energy inspired." C<sub>0</sub>2 Ethanol Endosperm Distill Centrifuge & Dry Plant Yellow Corn **DGHP** Fermentation Corn Germ Bran Ethanol Distill Corn Pre-treat Cobs Saccharification & Steam to **Ethanol Fermentation** Electric Generator **Process** Boiler **DDG Dryers** Solid Fuel Liquids Solid Fuel Anaerobic Separator Boiler Digester

Energy inspired. Doetenergy.com

#### Timeline



Feb 2007
POET selected
to receive up to
\$80 million for
Project LIBERTY

Oct 2007
POET and DOE
sign agreement
for first phase

2009 (anticipated) signing of second phase agreement

#### **Project LIBERTY Timeline**

2007

2008

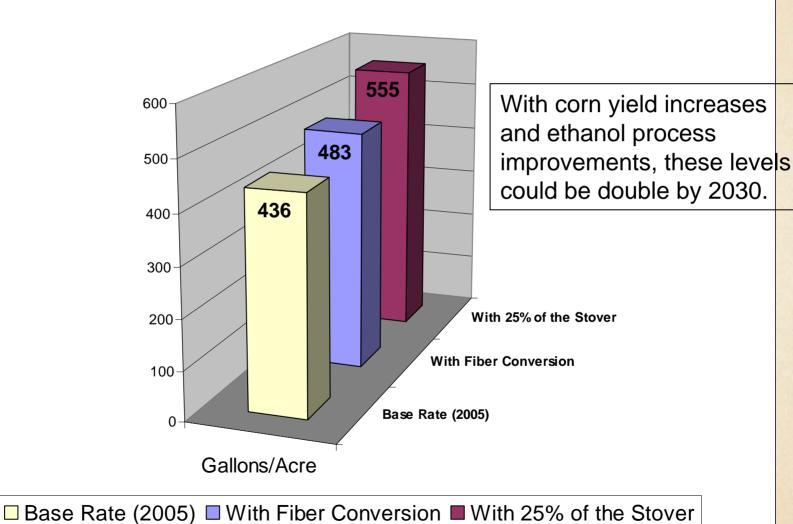
2009

2010

2011

Phase 1 2007 to 2009

Design, engineering, environmental analysis, biomass collection and others


Phase 2 (anticipated) 2009 to 2011 Construction Start Up
2011
(anticipated)







#### Improved Ethanol Efficiency





