

Biofuels Beyond Ethanol

Public Meeting of the Biomass Research and Development Technical Advisory Committee

David D. Hsu, Ph.D. david_hsu@nrel.gov

September 9, 2008

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by Midwest Research Institute • Battelle

Energy Independence and Security Act 2007

Cellulosic Biofuels do not specifically say ethanol

Advantages of ethanol

- Corn and sugar cane ethanol are commercial today
- Greenhouse gas savings
- Energy security
- Years of cellulosic ethanol research
- Oxygenate, blends with gasoline at low concentrations Limitations of ethanol
- Lower energy density
- Corrosive
- Mixes with water
- Only partially compatible with existing infrastructure

Biofuels Transportation Options

Academic/Industrial/Government Lab Study

- What technologies?
- What fuels?
- Use common basis/assumptions to compare

Methodology

Down-selected Fuels and Processes

Step 2: Models Develop mass/energy balance models and financial models based on **common** assumptions

Step 3: Evaluation

Using models, evaluate down-selected technologies based on economic, sustainability, other metrics

Gasification Fuels

Fischer-Tropsch (FT) Diesel

Biomass Gas to	sification Syngas	Fischer-Tropsch Synthesis		
	Rank	Comments		
Fuel compatibility	Good	Compatible with infrastructure, engines		
Level of Technology Demo		 Proven for natural gas (Shell), coal (Sasol). Economics more challenging with biomass 		
Techno-economic Analysis	In progress	•COP/ISU/NREL-Early 2009 •Challenges include gas cleanup, scale- up		
Sustainability	Good	 •50-85% GHG savings over gasoline^{1,2,3} •Electricity displacement 		

2. Marano and Ciferno, Life-cycle greenhouse-gas emissions inventory for Fischer-Tropsch Fuels. 2001

3. Gielen and Unander. Alternative fuels: An energy technology perspective. 2005. Use GREET value of 4,125 BTU/mile

^{1.} GREET 1.8b

Methanol to Gasoline (MTG)

	Rank	Comments
Fuel compatibility	Good	 Compatible with infrastructure, engines Aromatic hydrocarbon may be too high
Level of Technology	Demo	 Process developed in 1970s (Mobil) Natural gas MTG plant in New Zealand in 1985. Produced gasoline until 1997. Switch to methanol.
Techno-economic Analysis	In progress	•COP/ISU/NREL-Early 2009 •NREL process model forthcoming
Sustainability	Good	75% GHG reduction over gasoline ¹

1. GREET 1.8b. MTG LCA data based on scaling methanol processes by energy content of output fuels in MTG process. Source: Probstein and Hicks. Synthetic Fuels

Pyrolysis

Holmgren et al. Converting Pyrolysis Oils to Renewable Transport Fuels: Processing Challenges and Opportunities. January 2008.

Pyrolysis Bio-Oil as Refinery Feed

Bio-oil is composed of many oxygenated organic chemicals with water-miscible and oil-miscible fractions.

- Dark brown, mobile liquid
- Combustible
- Not 100% miscible with hydrocarbons
- Modest heating value ~17 MJ/kg
- High density ~1.2 kg/l
- Acidic, pH ~2.5
- Pungent odor
- "Ages," viscosity increases with time

Based on research performed at NREL (1990–2000).

Pyrolysis

Biomass Pyrolyz to Bio-C	e Dil → Stabiliz	ation		
	Rank	Comments		
Fuel compatibility Good		Pyrolysis oil can be upgraded to produce diesel and gasoline		
Level of Technology	Lab	•Pyrolysis oil production is well- established.		
		•Challenges are reducing char, oil standards, cheap stabilization of oil		
Techno-economic Several done, in progress		 •UOP, ConocoPhillips Interested •UOP/PNNL/NREL: (\$1.70-\$1.90/gal gasoline equivalent) •NREL (Wood) •Pacific Northwest National Labs •COP/ISU/NREL-Early 2009 		
Sustainability Fair		 •40-50% GHG reduction over gasoline (NREL/UOP) •Pyrolysis oil is carcinogenic, acidic 		

- Also looking at cellulosic ethanol
- Reports submit for publication in early 2009
- Currently at technical process modeling stage, moving toward economic analysis
- Selected fuels/technologies based on
 - 5-8 year timeframe
 - Organization background/expertise
 - Publicly available information
- Other fuels not in COP/ISU/NREL study

- Butanol
 - Higher energy content than ethanol
 - Claims that existing vehicles could run with little modification
 - Limited testing of claim
 - Does not mix with water. Pipeline compatibility
 - Can be produced in ethanol facilities
 - Can be blended with gasoline or diesel

Butanol

	Rank	Comments
Fuel compatibility	Fair	 Better than ethanol Claims of being compatible with existing vehicles
Level of Technology	Lab	 BP and DuPont to produce BP expects butanol faster than cellulosic ethanol Smaller companies (Gevo, ChemLac Inc.) working on butanol
Techno-economic Analysis	In progress	 NREL Aspen model and economic analysis on butanol from corn starch almost complete. Cellulosic will follow. Cost, yield issues
Sustainability	Fair	 20-60% GHG reduction over gasoline, depending on allocation for acetone¹ Corn butanol expected to be similar to corn ethanol

1. Wu, M. et al. Fuel cycle assessment of corn-based butanol. 2007.

Mixed Alcohols

- Mixed Alcohols
 - Higher energy content than just ethanol
 - No distillation (no need to separate out ethanol)
 - Can blend with gasoline

	Rank	Comments
Fuel compatibility	Poor	Blends with gasoline
Level of Technology	Pilot	 Range Fuels 932 plant is an ethanol from mixed alcohols plant. 20 MGY. (2009 completion) Abengoa 932 plant (11.4 MGY ethanol)
Techno-economic Analysis	Partly done	 •NREL 2007 Thermochemical design report is ethanol from a mixed alcohol design¹ •High catalyst cost
Sustainability	TBD, likely Good	 Thermochemical ethanol being done. Expect mixed alcohols to be better because of elimination of distillation

1. http://www.nrel.gov/docs/fy07osti/41168.pdf

Renewable Alkanes

Aqueous-Phase Reforming references:

- Huber et al., Angew. Chem. Int. Ed. (2004).
- Huber et al., *Science* (2005).

Renewable Alkanes

	Rank	Comments	
Fuel compatibility	Good	Goal of alkanes is to produce gasoline, diesel, and jet fuels	
Level of Technology	Lab/Pilot	 LS9 plans pilot facility in 2008. Amyris plans pilot facilities, has contracts with Brazilian sugar cane/ethanol companies 	
Techno-economic Analysis	None	 Internal data make external analysis difficult. Claims in the press are often optimistic: LS9 expects competitive with \$40-50/bbl crude oil. 	
Sustainability	No external	Claims of better yield and utilization than corn ethanol, but not verified	

Hydrogenation-Derived Renewable Diesel

Hydrogenation-Derived Renewable Diesel

Plant Oils Animal Fats	s Hydropro	cessing Diesel	
	Rank	Comments	
Fuel compatibility Good		Should be compatible with refineries, vehicles	
Level of Technology	Demo	 ConocoPhillips and Tyson Foods work to make diesel from fat Neste Oil, Petrobas, Syntroleum, UOP-Eni Feedstock availability is issue 	
Techno-economic Not public Analysis Image: state of the state of t		 Animal fat and plant oil prices can be obtained Refining costs are often proprietary Commercial trials suggest that economics may be favorable 	
Sustainability	In progress	ConocoPhillips has LCA on HDRD from tallow. Will be presented at AIChE conference in November.	

Microalgae as a Source of Biofuels

DOE's Aquatic Species Program at NREL (1978–1996) provided the technical foundation for producing biodiesel from algae.

The concept involves:

- Sunlight
- CO₂ in fuel gases and/or vent gases
- Unproductive land
- Brackish or saline water.

Productivity per-acre potential (~10,000 gal/acre/yr) far exceeds that of terrestrial plants. *R&D is needed to reach this potential.*

NREL and Chevron are in a collaborate research and development agreement to study liquid fuels using algae.

Algal Biodiesel

	Rank	Comments	
Fuel compatibility	Good	Diesel	
Level of Technology	Lab	 Very early stage Several companies exploring algae: Livefuels, Greenfuels, PetroSun, Chevron, Boeing, Air Force 	
Techno-economic Analysis	Spreadsheet level	 Biological, rather than engineering, factors influencing cost Aggressive assumptions still lead to 2x conventional diesel fuel costs (1998) 	
Sustainability	None	No competition for arable landWater use an issue	

Fuel Summary Table

	Fuel Compatibility	Level of Technology	Techno- economic Analysis	Sustainability
Fischer- Tropsch Diesel	Good	Demo	In Progress	Good
Methanol-to- Gasoline	Good	Demo	In Progress	Good
Pyrolysis	Good	Lab	Several done	Fair
Butanol	Fair	Lab	In Progress	Fair
Mixed Alcohols	Poor	Pilot	Partly done	Likely good
Renewable Alkanes	Good	Lab/Pilot	None	None
HD Renewable Diesel	Good	Demo	Not public	In Progress
Algal Biodiesel	Good	Lab	Spreadsheet	None