Recent breakthroughs in enzymes for biomass hydrolysis

Landon Steele

Danisco USA –

Genencor Division

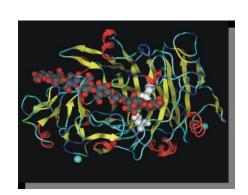
Biomass RnD Technical Advisory Committee, Feb 26 2009, San Antonio, Texas

Agenda

- → Background on Genencor
- → Accellerase® Enzyme Product Line
- → Recent Developments Accellerase® 1500
- Challenges Ahead
- → Summary

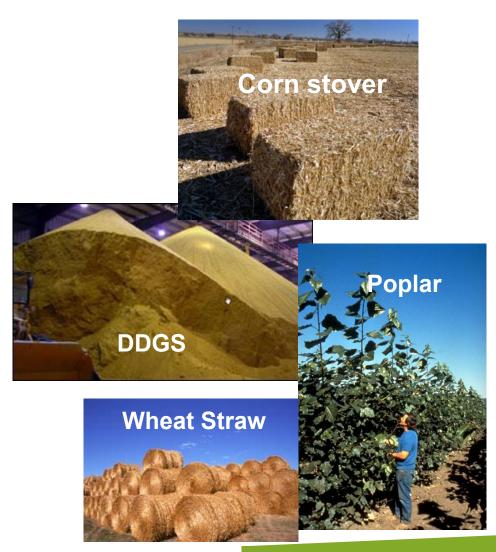
Genencor in brief: a world leader in industrial biotechnology

- → Pioneer in biotech history traced to 1982, when Genentech, Corning Glass Works joined to form Genencor
- Over 250 commercial enzyme products
- → ~3500+ owned and licensed patents and applications
- → Parent company Danisco more than USD \$3.5 billion in revenues and 9,700 employees
- Global sales and manufacturing


Genencor's longstanding leadership in cellulosic biofuels

25+ years of investment and R&D in biofuels

- → Pre 2000 Genencor builds the leading production systems for cellulase enzymes and patents key genes required for economic biomass degradation
- → 2004 Genencor completes 4-year contract with NREL, achieves 30-fold reduction in cost to convert biomass to fermentable sugars
- → 2007 Launched first commercially available enzyme for cellulosic ethanol -Accellerase[®]
- → February 2008 DOE awarded Genencor 2nd round of funding for cellulosic ethanol enzyme improvement
- → May 2008 Genencor and DuPont enter 50/50 joint venture: DuPont Danisco Cellulosic Ethanol LLC (DDCE)
- → February 2009 Launch Accellerase® 1500



Extensive feedstock / pretreatment experience

- → Genencor is engaged in leading academic / industrial consortia and customers pushing the boundaries of developing cellulosic technology
- → CAFI 1 / 2 / 3
 - Corn-stover / Poplar / Switchgrass pretreatment comparison by leading academics
 - AFEX, Dilute Acid, Hot Water, Lime, Sulfur Dioxide, Aqueous Ammonia, etc...
- → Midwest Consortium DDGS/Wet Cake, Grain Fiber conversion
- → French Pulp & Paper consortium Recycled fibers, softwood and hardwood pulp
- → Wheat Straw, Sugarcane Bagasse and More!

Agenda

→ Background on Genencor

- → Accellerase® Enzyme Product Line
- → Recent Developments Accellerase® 1500
- → Challenges Ahead
- → Summary

Genencor's two-pronged strategy

Genencor has embraced a two-pronged complementary strategy to serve the biorefinery market:

- 1. Create a global
 Accellerase® enzyme
 business to enable
 cellulosic ethanol and
 other biochemical
 production using
 fermentable sugars
 from cellulose
- Provide an integrated solution through the our new Joint Venture with Dupont to produce cellulosic ethanol:
 DDCE

Pretreatment

Enzymatic hydrolysis

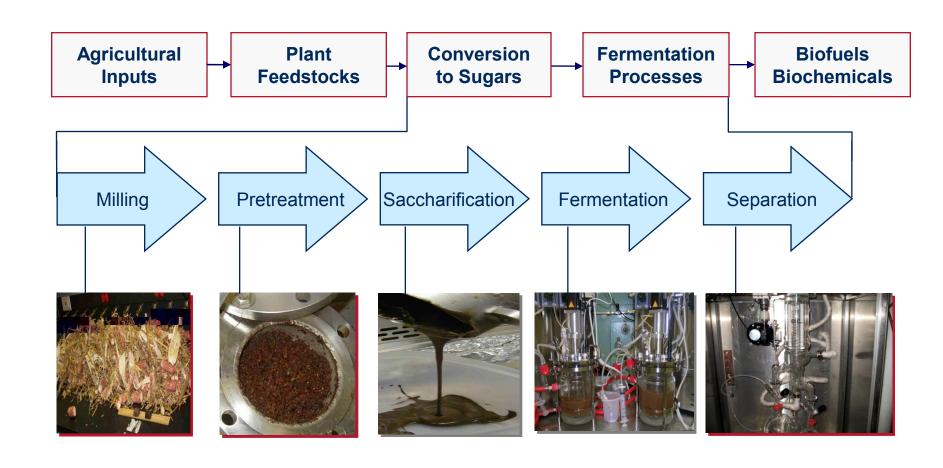
Fermentation to ethanol

Accellerase® enzyme product line

- → Accellerase® 1000 was the first commercial enzyme product specifically designed for biomass hydrolysis.
- → First generation representative product for process developers & engineers
- → This week we announced the next step and significant improvement in the Accellerase® Product Line:

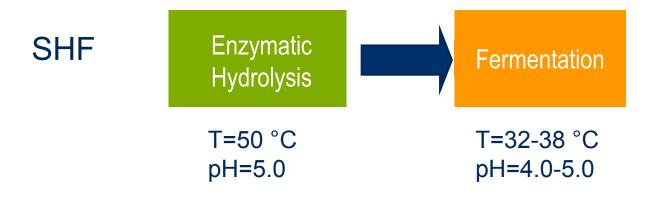
Accellerase® 1500!

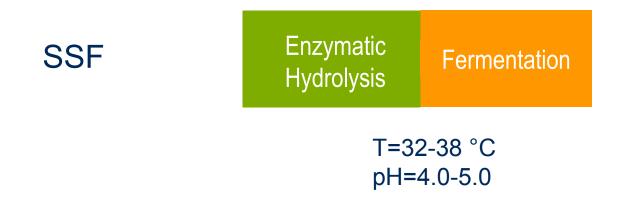
Now we launch Accellerase® 1500



- → Accellerase® 1500 designed to replace Accellerase® 1000
- Strengthens Genencor's Leadership in Biomass Hydrolysis Enzymes
 - Complex of many important activities necessary for biomass hydrolysis.
 - Unclarified product.
 - Lower cost in operation than Accellerase[®] 1000.
 - Even higher β-glucosidase activity drives more complete conversion to glucose.
 - Improved formulation
- Delivers Significantly Enhanced Performance

Required operations for cellulosic ethanol process




Process Development: Different Process Configurations (1)

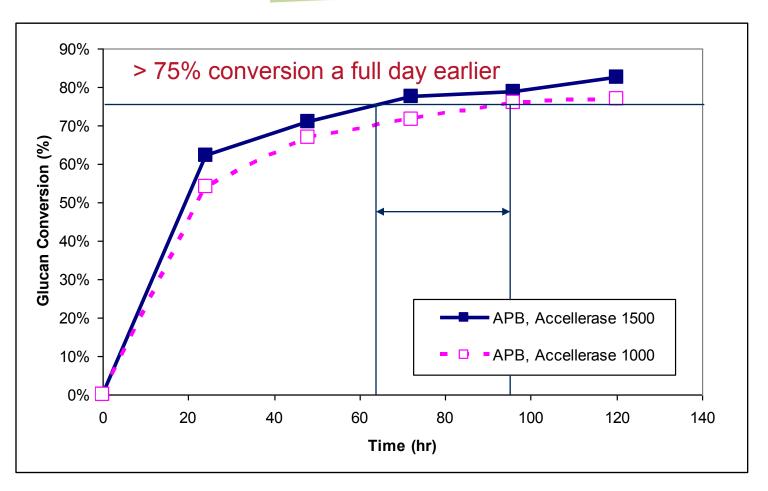
Separate Hydrolysis and Fermentation (SHF)

Simultaneous Saccharification and Fermentation (SSF)

Process Development: Different Process Configurations (2)

Hybrid Saccharification and Fermentation (HSF)

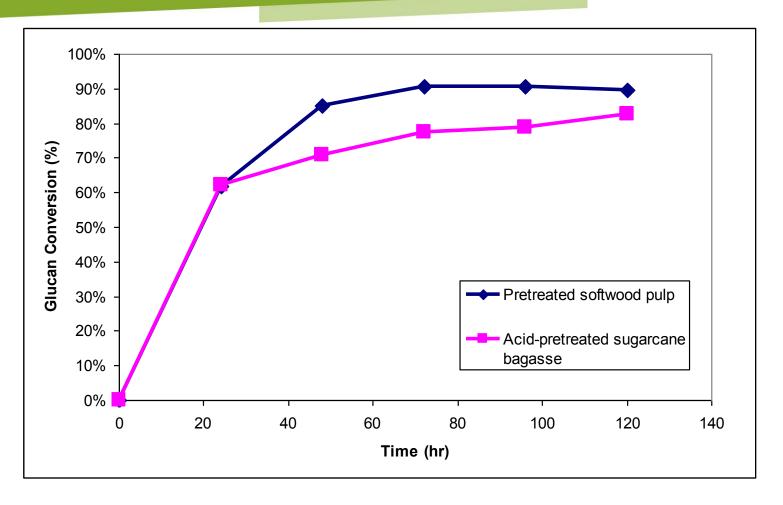
HSF


Enzymatic Hydrolysis

Fermentation

T=50 °C for certain time, then T=32-38 °C, pH=4.0-5.0

Accellerase® 1500 vs Accellerase® 1000 Saccharification



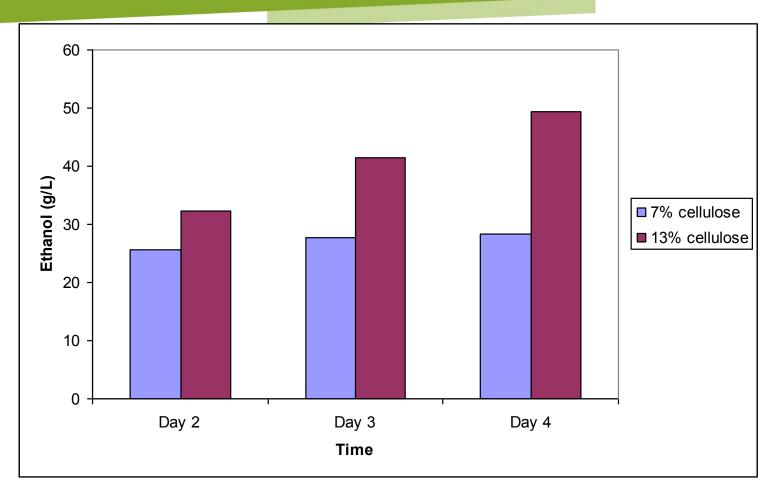
% Glucan conversion of and a washed acid-pretreated sugarcane bagasse (APB) using ACCELLERASE® 1500 and ACCELLERASE® 1000 at 0.24 mL/g cellulose, 7% cellulose loading, 50°C, and pH 5.0.

Accellerase® 1500 performance on a variety of feedstocks



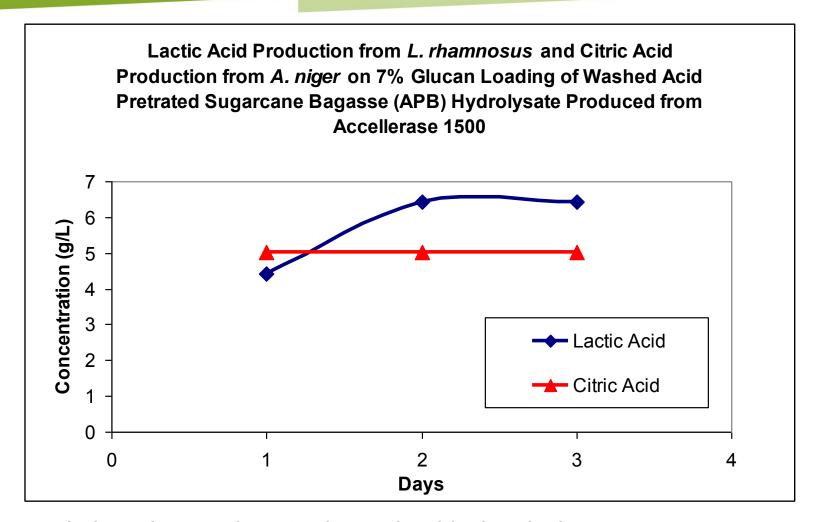
% Glucan conversion of a pretreated softwood pulp**, and a washed acid-pretreated sugarcane bagasse (APB) using **ACCELLERASE**® **1500** at 0.24 mL/g cellulose, <u>7%</u> cellulose loading, 50°C, and pH 5.0.

Accellerase® 1500 performance on a variety of Feedstocks



% Glucan conversion of a ammonia fiber-expansion (AFEX) corn stover using **ACCELLERASE**® **1500** at 0.24 mL/g cellulose, <u>2%</u> cellulose loading, 50°C, and pH 5.0.

Accellerase® 1500 performance in SSF mid to high solids loading



Simultaneous saccharification and fermentation of washed acid-pretreated sugarcane bagasse using **ACCELLERASE® 1500** at 0.24 mL/g cellulose, <u>7%</u> and <u>13%</u> cellulose loading, pH 5.0, and 38°C with THERMOSACC® DRY yeast (Milwaukee, WI).

Accellerase® 1500 – not just for ethanol!

Lab scale experiments show other biochemicals can made from sugars produced from biomass using Accellerase® 1500!!

Agenda

- → Background on Genencor
- → Accellerase[®] Enzyme Product Line
- → Recent Developments Accellerase® 1500

- → Challenges Ahead
- → Summary

Process economics impacted by ALL steps

- → Genencor is investing in delivering next generation enzymes, but all parts of the process count to deliver improved overall economics.
 - Capital and Operations Cost
 - Feedstock Choice and Cost
 - Pretreatment Choice and Cost
 - Conversion of sugars to final product
 - For ethanol production: Ethanologen Performance
 - For biochemicals: Efficiency of pathways to final product.
 - Water and Energy Recycle
 - Waste Disposal
- Process integration key to success!

					Dose for 80% Glucan Conversion in 3 days @
				% Lignin	7% Cellulose (mgTP
Pretreatment	Substrate	% Glucan	% Xylan	(K+AS)	Accellerase/g cellulose)
Kraft	Paper Pulp*	81.9	8	3.1	15
Kraft	Paper Pulp*	74.6	20.7	26	13
Kraft	Paper Pulp	77.3	21.5	0.7	
Kraft	Paper Pulp*	82.2	9.9	3.5	
Kraft	Paper Pulp*	74.3	21.1	27	
Kraft	Paper Pulp*	77.8	9.4	3.1	
Dilute Acid (NREL)†	Stover	55.6	3	30	
Dilute Acid (NREL)†	Bagasse	56.9	3	30	
Kraft	Paper Pulp	74	5.5		
Autocatalytic	Bagasse	54.4	3.2	30.3	
Autocatalytic	Bagasse	54.2	3.2	26.7	
Autocatalytic	Bagasse	52.9	5.3	29	
Steam Expansion	Hardwood	54.4	6.5	34	
AFEX	Stover	31.7	19.1		
Autocatalytic	Bagasse	55	5	25	
Steam/SO2	Spruce	46.5	4.1	32.1	
Autocatalytic	Bagasse	59.7	4.1	26	
Autocatalytic	Bagasse	59.4	1.6	25.5	
Two stage acid/alkali	Rice Straw	60.5	15.7	8.6	
Autocatalytic	Bagasse	64.2	3	26	
Autocatalytic	Bagasse	65.9	2.4	20.1	
Steam Expansion	Stover	40.6	11.7	31.4	
Steam Expansion	Stover	43.1	5.2	36.3	
Steam Expansion	Hardwood	47.9	15.2	29.7	
Steam Expansion	Bagasse	49.4	13.9	27.5	
AFEX	Bagasse	43.1	22.6		
Kraft	Recycle Pulp	51.4	8.3	19	
Steam Expansion	Bagasse	40.6	22.6	25.5	V 100
Steam Expansion	Bagasse	41.4	21.1	27.6	>140

Note: data for Accellerase® 1000, mg total protein / g cellulose

Future improvements in enzyme efficacy driven by active RnD today!

- → Reduce product inhibition of enzymes
- → Increase ethanol tolerance of enzymes
- → Increase thermo tolerance of enzyme suite
- Increase hemicellulase activity
- → Reduce ineffective binding/ interaction with substrate
- → Increase specific activity of enzymes

= Improved Process Economics

Summary

- Genencor has been at the forefront of cellulase and hemicellulase enzyme improvement for years and continues to actively innovate.
- → ACCELLERASE® 1500 is our new commercially available biomass enzyme complex developed specifically for second generation biorefineries
- Government support for technology development and pilot plant and larger projects are critical for this emerging industry.
- → Process integration at pilot / demo scale will continue to improve the current state of cellulosic ethanol and biochemical economics and environmental impact.

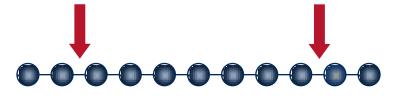
Acknowledgements: Genencor Biomass Team

Biomass Applications Group

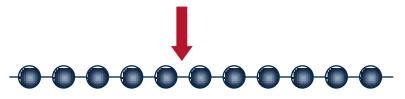
Biomass R&D Teams

Manufacturing Plants

Biorefinery Business Group


** Some research on pulp and paper feedstocks funded by Agence Nationale de la Recherche, France (ANR-05-BIOE-007)

www.accellerase.com/


Cellulose hydrolyzing enzymes

Cellobiohydrolase

Endoglucanase

β-Glucosidase

- Cellulose digestion requires at least 3 types of activities working synergistically:
 - Exo-1,4-β-glucanase (cellobiohydrolase): processive, attacks reducing (CBH I) or nonreducing (CBH II) end of cellulose chain, releasing cellobiose units.
 - Endo-1,4-β-glucanase: nonprocessive, attacks along chain; reduce dp and viscosity, creating more chain ends.
 - Beta-glucosidase (β-glu): converts soluble oligosaccharides to glucose, relieving product inhibition.

Existing and planned US cellulosic biorefineries

Source: The Advanced Biofuels & Climate Change Information Center, Feb 2009 http://biofuelsandclimate.wordpress.com/about/

Red: In Operation, Green: Commercial Scale, Blue: Pilot or Pre-commercial Scale