

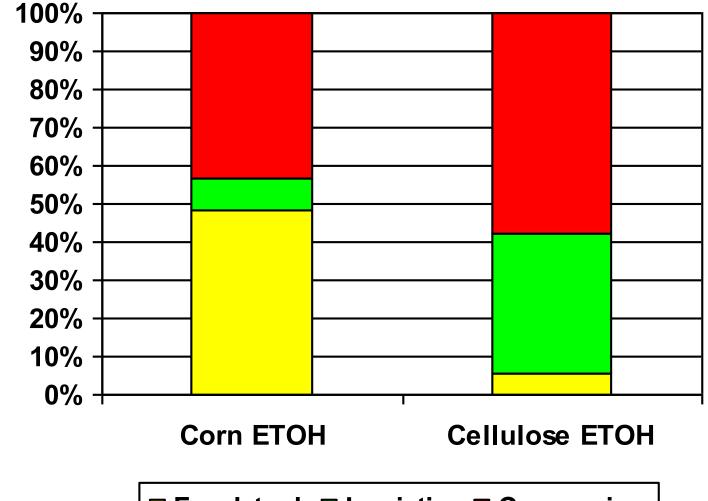
U.S. Department of Energy Energy Efficiency and Renewable Energy

biomass program

Biomass Feedstock Logistics

Biomass Research & Development Technical Advisory Committee San Antonio, Texas February 26, 2009

Richard Hess, Ph.D. Idaho National Laboratory


- Feedstock Logistics State of Technology
- Uniform Format Supply System Designs to Achieve Cost and Volume (60 Billion gals) Targets
- Technical Work to Achieve Supply System
 Design Targets Corn Stover example
 - Regional Feedstock Partnerships for Development of Biomass Resources
 - Logistics
 - Feedstock-Conversion Interface Tasks

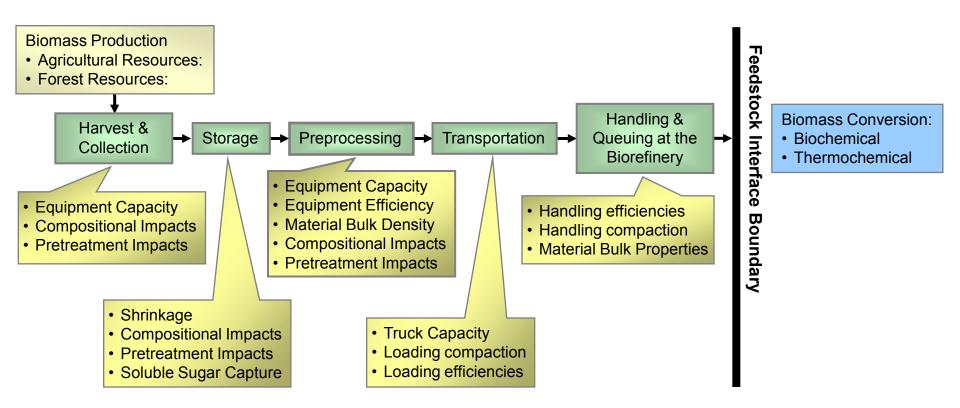
Feedstock Logistics Cost Challenge

beemass program

% of Production Costs

Feedstock Logistics Conversion

Feedstock Supply System Operations


biomass program

Biomass Performance Metrics:

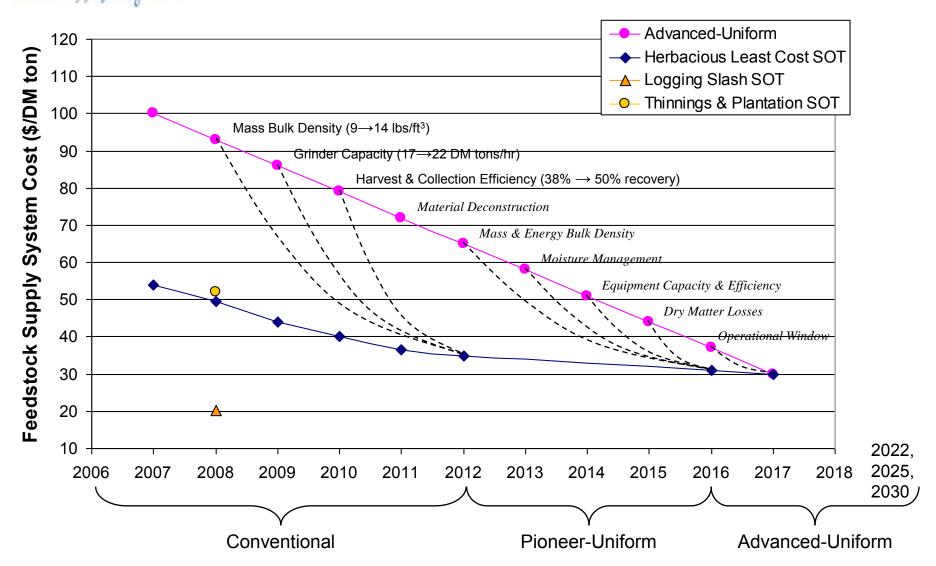
- Physical and Rheological Properties
- Product Bulk Density
- Material Stability

Equipment Performance Metrics:

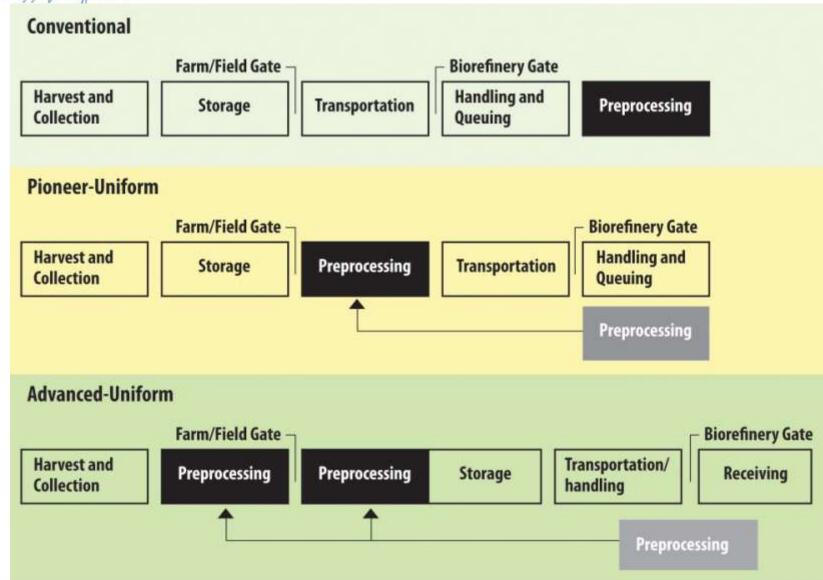
- Equipment Efficiency / Capacity
- Dry Matter Losses
- •Operational Window

Feedstock Logistics 2008 SOT in 2007\$

biomass program

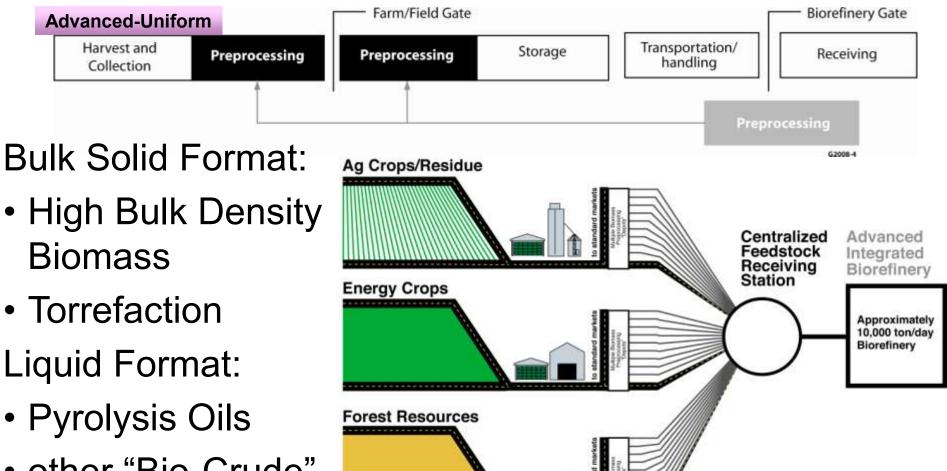

	Herba	Woody	
2007\$	Corn Stover	Switchgrass	Thinnings & Plantations
2006 Actual	\$57.70	_	_
2007 Estimate	\$54.00	_	_
2007 Actual *	\$53.70	\$50.80	\$51.85
2008 Estimate	\$49.40	\$46.50	\$47.80
2009 Target	\$41.60	\$41.20	\$42.50
2010 Target	\$37.80	\$37.20	\$38.50
2011 Target	\$36.10	\$36.00	\$36.10
2012 Target	\$35.00	\$35.00	\$35.00
2017 Target	≤ 25% of MESP	≤ 25% of MESP	≤ 25% of MESP

* Assume product specification for conventional SOT to be 1/4 to 1/8 minus particle size at 12% moisture.


Feedstock Logistics SOT Estimated Progression to Targets

beemass program

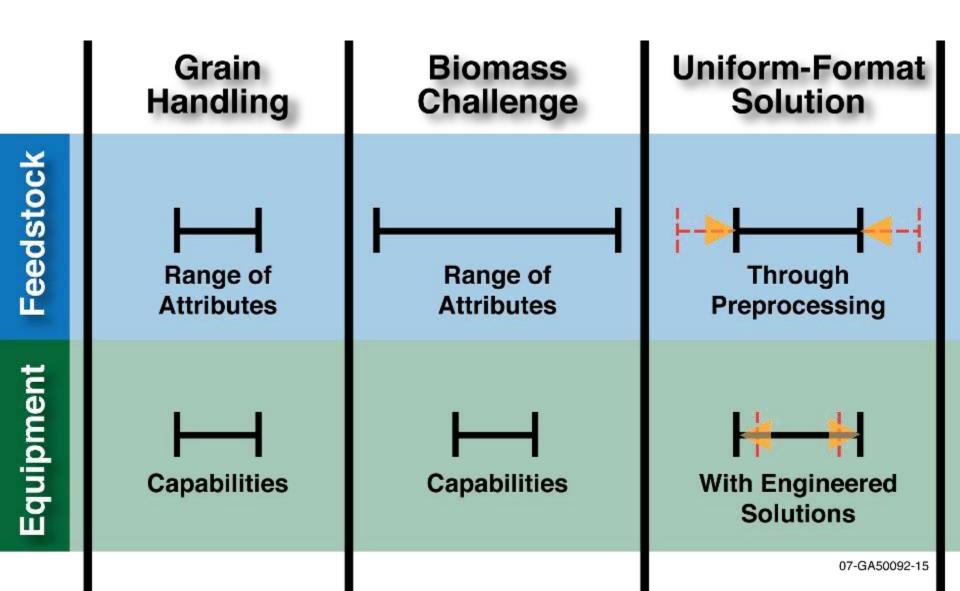
Path to Uniform Feedstock Supply System


beemass program

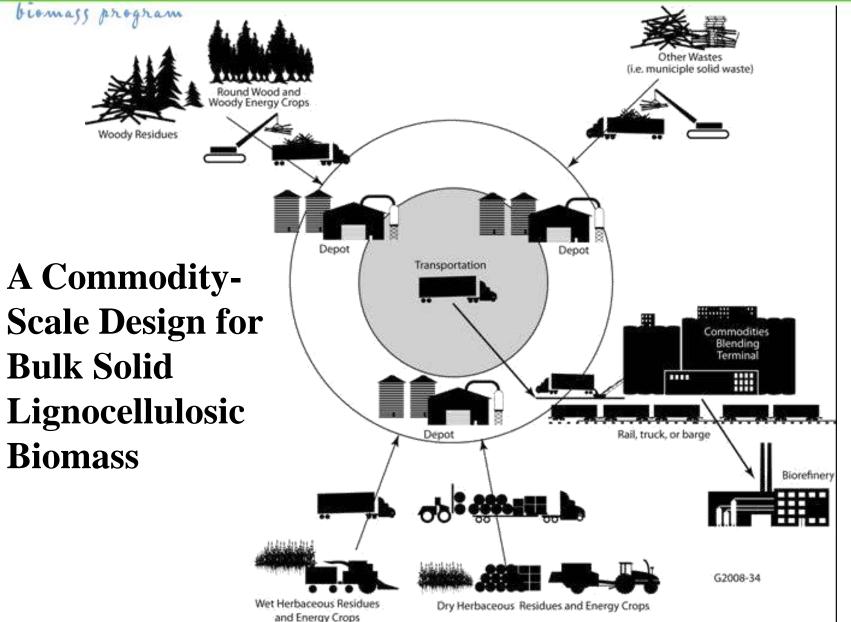
U.S. Department of Energy Energy Efficiency and Renewable Energy

Commodities of the Uniform Feedstock Supply System – "Advanced Uniform"

biomass program



 other "Bio-Crude" formats


U.S. Department of Energy Energy Efficiency and Renewable Energy Uniform Format: Alter Feedstock Attributes to Function in Standardized Equipment

biomass program

Uniform-Format Solid Feedstock Supply System

biomass program

- A highly efficient, large capacity, dependable feedstock supply system for biomass already exists with the nation's commodity-scale grain handling and storage infrastructure.
- There is no alternate supply system design for lignocellulosic biomass that could handle the large quantities at the same or greater efficiencies and reliability than the existing grain handling infrastructure.
- The national goal of annually producing 60 billion gallons of ethanol, which requires supplying roughly of 700 million dry matter tons of biomass to a biorefining industry, can only be effectively accomplished through the development of harvesting and preprocessing systems that reformat lignocellulosic biomass resources into a "Uniform-format bulk solid" that can be stored and handled in an expanded grain (i.e., high density aerobically stable bulk solids) commodity infrastructure.

Feedstock Supply Logistics Barriers

biomass program

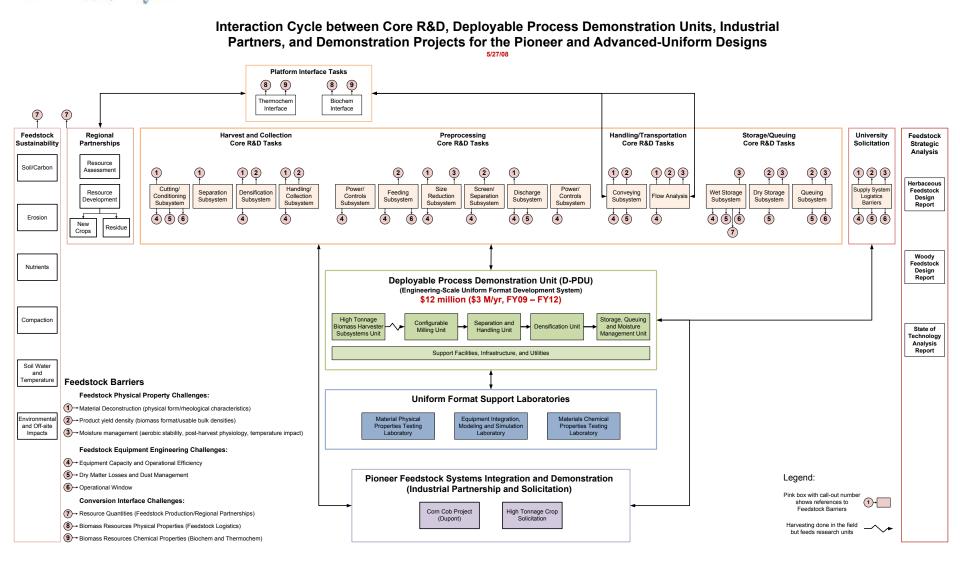
Feedstock Physical Property Challenges:

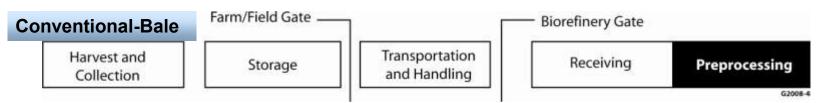
- Material deconstruction changes in physical form, rheological characteristics
- Product yield density biomass format and bulk/energy densities
- Moisture management aerobic stability, post-harvest physiology, temperature impact

Feedstock Equipment Engineering Challenges:

- Capacity and Operational Efficiency
- Dry Matter Losses (including dust collection/control)
- Operational Window

Interface Challenges:

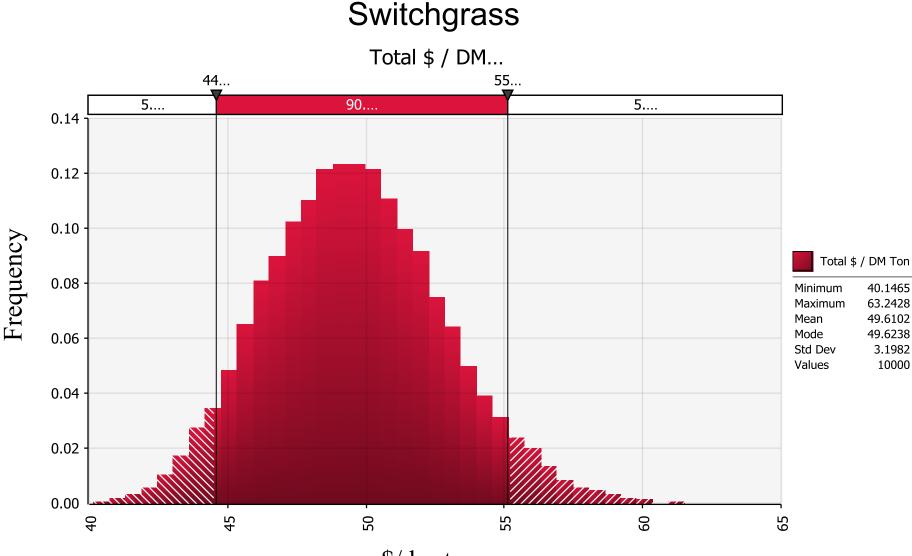

- Resource Quantities/Sustainability (Feedstock Production)
- Biomass Resources Physical Properties (Feedstock Logistics)
- Biomass Resources Chemical Properties (Biochem and Thermochem)


Biomass Feedstock Program

biomass program

Conventional Square Bale Feedstock Supply System

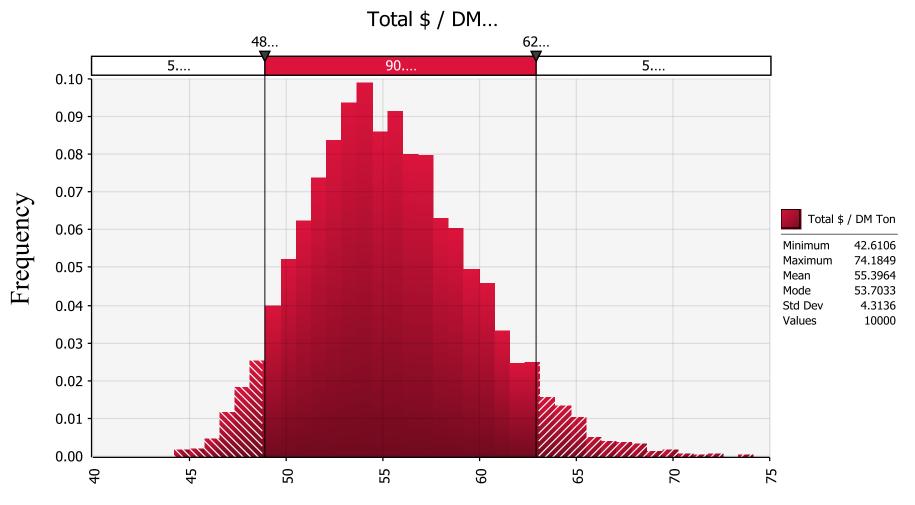
biomass program



- Same as the Livestock Forage System
- 10 material intermediates,
 3 biomass format changes
- 14 process steps, 21 different types of equipment
- Supply system is bale format specific

beemass program

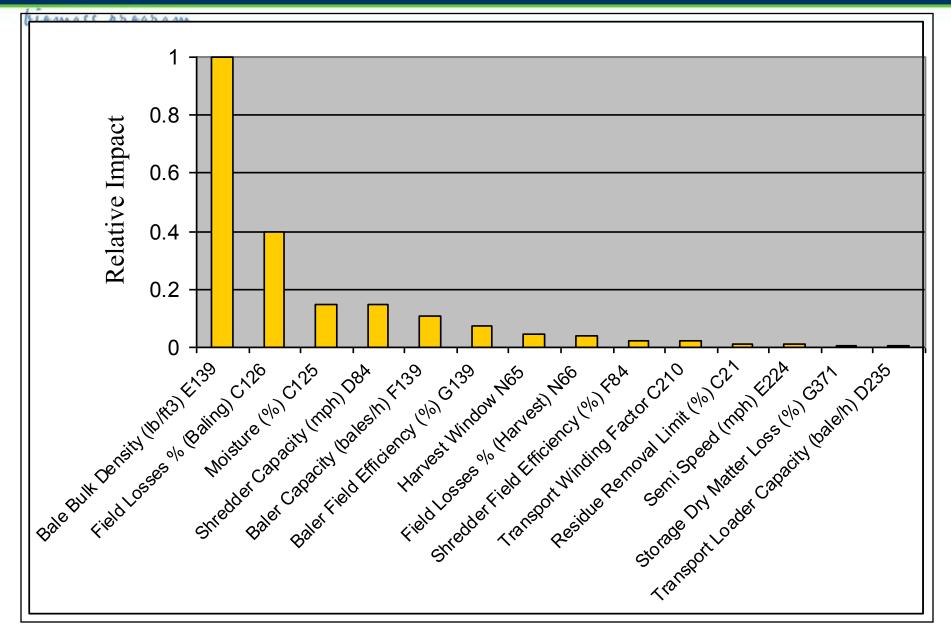
Conventional Bale Supply System Monte Carlo Cost Analysis Results



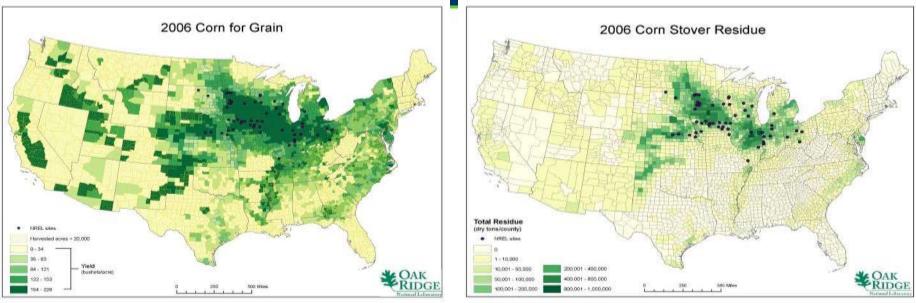
\$/dry ton

biomass program

Conventional Bale Supply System Monte Carlo Cost Analysis Results

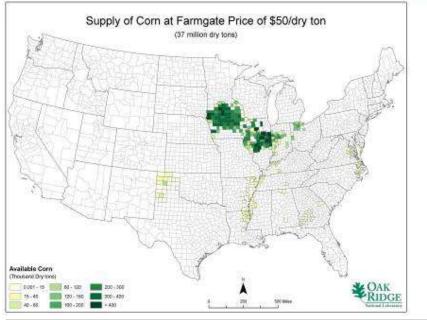

Corn Stover

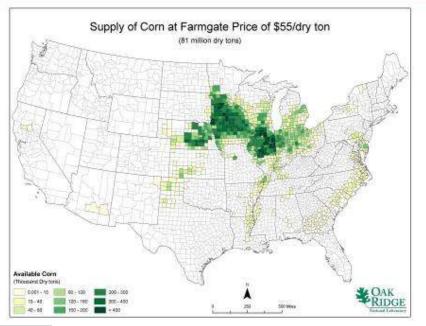
\$/dry ton

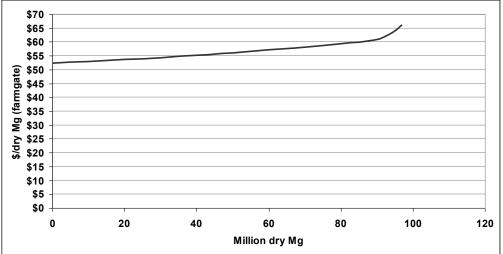

U.S. Department of Energy Energy Efficiency and Renewable Energy

Ranking of Factors Influencing Costs in the Conventional Bale Supply System

Competing Uses - Stover Production versus Availability


Issues:


- Depending on conditions removal rates range from 0% up to 50%
- Yearly production rates can vary significantly
- Because of variability it will be necessary to contract substantially more stover supply than actually needed



1

Supply is very sensitive to farm gate price

Corn stover national supply curve is very elastic. At low prices the feedstock is largely confined to the corn belt.

Perlack et al, 2008 Oak Ridge National Laboratory

Agronomic Factors Limiting Crop Potential

biomass program

Limiting factor	Issues				
Loss of soil	Supply/replenish SOC	Restrict stover 1			
organic	Soil quality	maintain SO			
carbon	Future production capacity	Fractional or se			
		Develop situatio			
		amount of st			
		"RUSLE2":			
Soil erosion	Water erosion and runoff management	Restrict stover 1			
	Wind erosion management	keep soil los			
	Off-site effects	WEPS			
Loss of plant	Increased fertilizer application and	Retain stover			
nutrients	production costs or reduced crop	Improve nutrier			
	yield and producer income	Return ligneous			
		Fractional or se			
Soil water and	Complex interactions	Need help here			
temperature	Condition-specific solutions necessary	We know what			
dynamics		cool Spatial Variability of			
Soil compaction	Compaction of soil due to increase	Reduce Combine Harvest Index			
•	field traffic for residue removal	Use equipment Range () (I ower) -			
	and/or transition to no-till cropping	Use equipment Range 0 (Lower) –			
	system	Conduct Gield (upper) pper			
Environmental	Off-site erosion impacts	Reduce runoff a			
degradation	Nutrient loss to surface water	Develop alterna			

• Hard Red Spring Wheat

• Ashton, ID - 1996

Crop Organic Matter return rate recommendations (or biomass input) must be managed just like fertilizers and other crop production inputs

U.S End

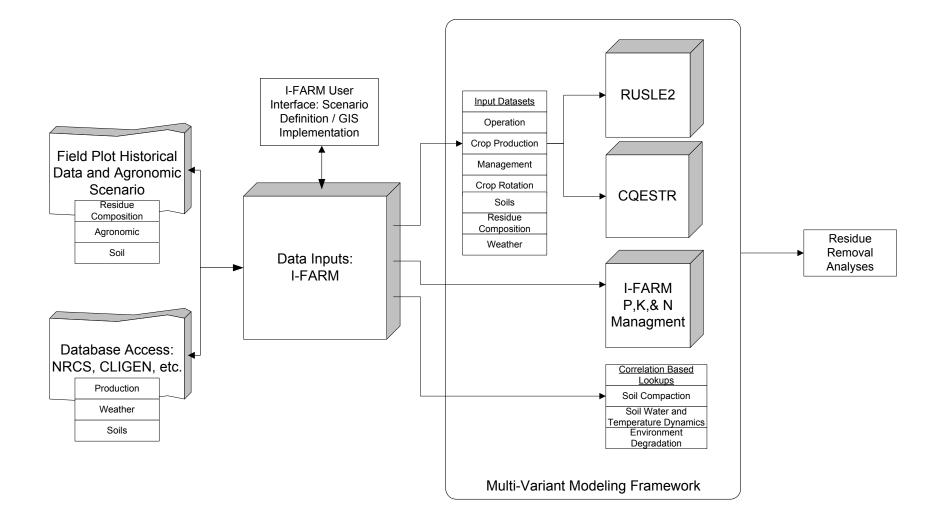
Regional Biomass Energy Feedstock Partnership 2008 Bioenergy Crop Trials

Regional Partnership Agronomy Field Trials

biomass program

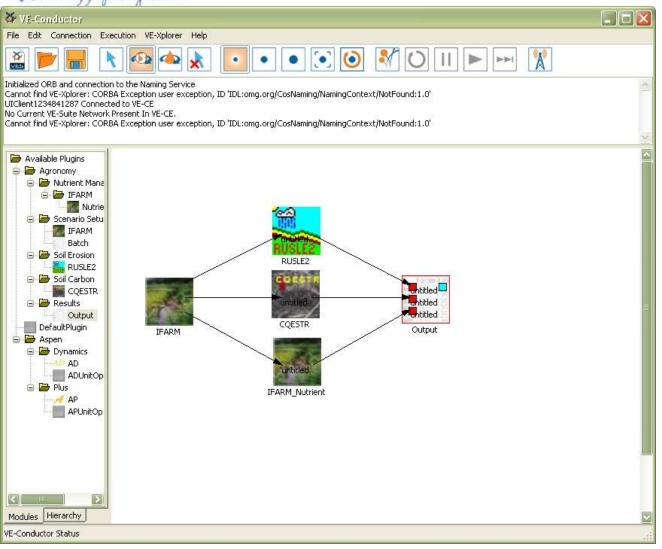
Core Treatment

- Continuous Corn
- No (or minimum possible) Tillage
- Stover removal treatments of 0%, 50%, maximum possible removal
- Soil sampling protocol
- Management data reporting protocol
- Biomass sampling protocol



Residue Removal Tool Status

biomass program


Initial Coupling and Data Flow

Residue Removal Tool Status

•

biomass program

- Ports on the plugins are then used to connect the components directing the calculation
- Through each of the plugins the scenario definition and computation model specific settings are accessible
 - With the system assembled and scenario defined, the network is ready for calculation

biomass program

Model Integration Status

Erosion

- RUSLE2:
 - Fully integrated and functional utilizing the shared library built at the University of Tennessee.
- Soil Organic Carbon
- CQESTR:
 - Fully integrated utilizing a custom built interface class.
 - Model is compiled into an ActiveX executable and integrated using the Microsoft COM API (Common Object Model, and Application Programming Interface).
 - Model code was not altered preserving validation.
 - Finishing work removing the RUSLE1 model dependence.

Nutrient Management

- I-FARM
 - Nutrient cycling functioning within I-FARM analysis framework.

Scenario Setup

- I-FARM
 - Working through remaining server access issues for data sharing, expected to be solved within 1-2 weeks.
- Batch Data Mode
 - Currently functioning ability to setup and run a suite of scenarios through a batch mode.

biomass program

Demonstration Scenario:

Four Management Treatments

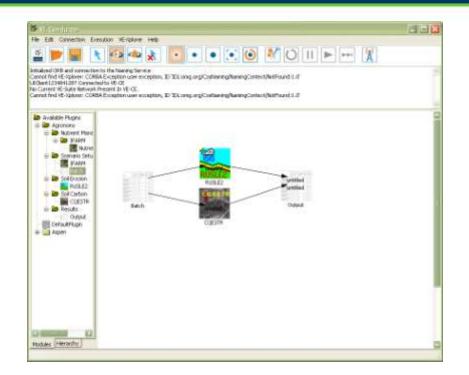
- 1. Standard Tillage: Chisel Plow, Field Cultivate, Planter Double Disk Opener
- 2. No Tillage: Planter Double Disk Opener w/Fluted Coulter
- 3. No Tillage with Winter Wheat Cover: Drilled in 7 inch rows. Chemically killed in late boot stage. Not harvested for grain.
- 4. No Tillage with Interseeded Legume Cover and Perennial Red Clover Cover: Red Clover regrowth after harvest of corn that has had clover aerially or highboy seeded in growing corn. Covers are chemically killed, mow and bale is possible.

Three Removal Rates per Treatment

- 1. 0%
- 2. Approx. 50%
- 3. Maximum Possible: Approx. 100%

Calculations Performed

- Erosion through RUSLE2
- SOC through CQESTR



Residue Removal Tool Status

biomass program

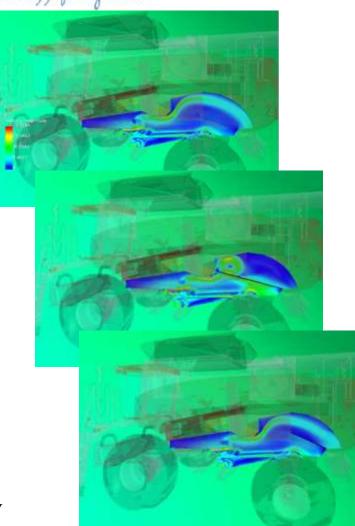
Demonstration Scenario:

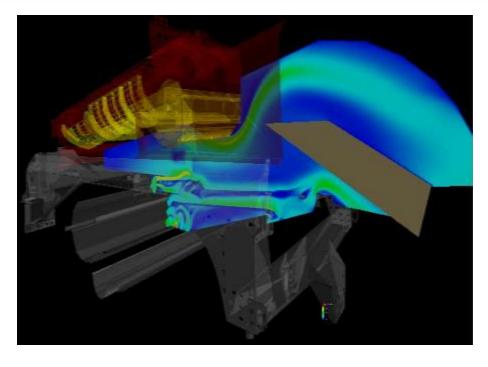
25 Acre Site near Ames, IA 180 bu/acre average yield

	Erosion (T=5.0) (t/acre/yr)				S	OC (lbs/acre/yr)		
Removal Rate	Conv Till	No Till	NT w/Annual Cover	NT w/Perennial Cover	Conv Till	No Till	NT w/Annual Cover	NT w/Perennial Cover
0%	0.6	0.061	0.1	0.025	-152.58	-105.77	7.57	176.88
50%	2.1	0.21	0.24	0.043	-191.79	87.47	-40.48	136.06
100%	2.2	1.1	0.57	0.39	-211.28	-184.04	-77.79	95.18
•								

Outlier currently being reviewed

Management Strategy Studies; Fractional Single-Pass vs. Mow and Rake


blematt prearam

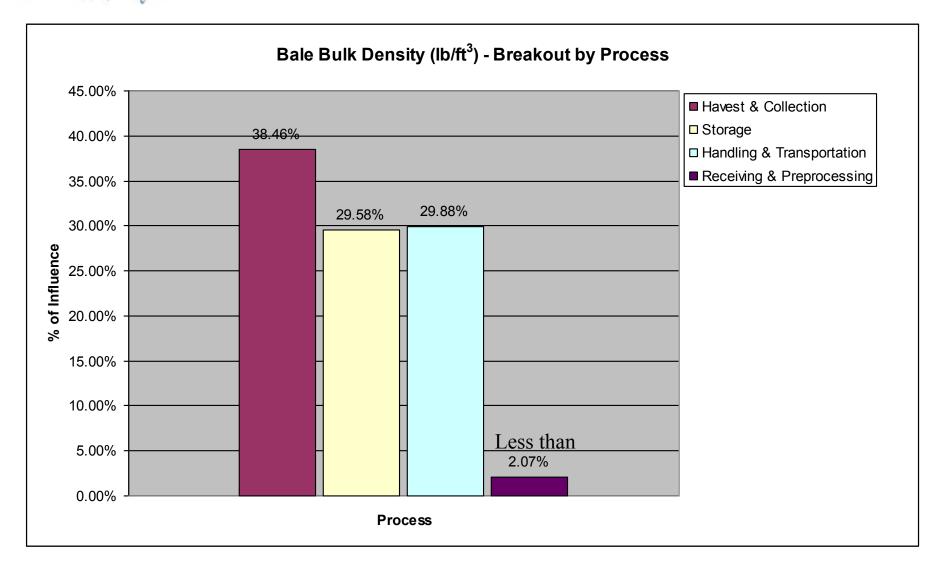


- Single-pass High cut harvested 72% of stover produced (i.e., 12% more stover collected per acre than billion ton study assumptions), so
- 70% removed with combine
 - Low moisture
 - Reduced pretreatment severity
 - Short soil half-life (Kumar and Goh, 2000; Eiland et al. 2001)
- 30% of stalk left behind
 - High moisture
 - Highly recalcitrant
 - Long soil half-life
- 40% removed with mow and rake mostly stalk material

Harvest and Collection

beemass program

- Computational Fluid Dynamics Models (CFD)
- Particle Image Velocimetry (PIV)
- Interactive Design Canvas
- Successful Real-World Application of modified separation chamber


PIV

Field Testing

Relative Impact of Biomass Bulk Density on Supply System Unit Operations

biomass program

U.S. Department of Energy Energy Efficiency and Renewable Energy

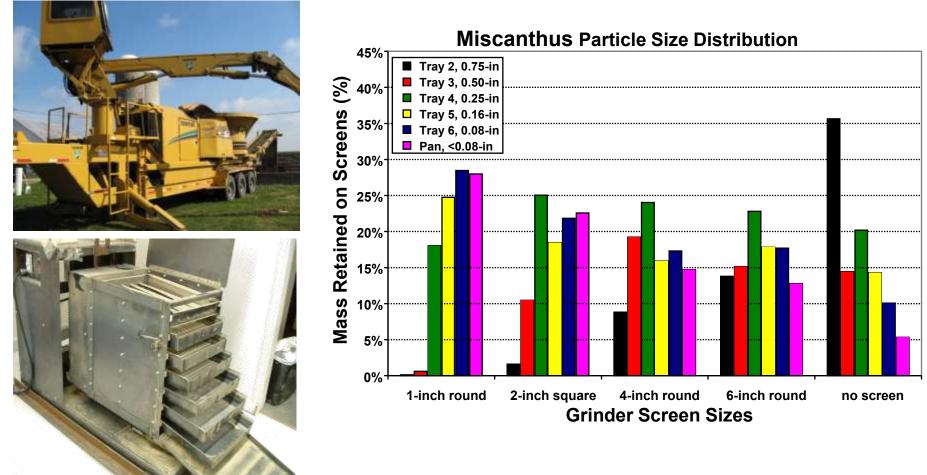
Yield and bulk density data for large square bales

biomass program

	Crop Yield (baled DM ton/acre)	DM Bulk Density (lb/ft ³)	Bales (4×4×8-ft) /Acre	Bales (3×4×8-ft) /Acre
Corn Stover	1.6	8–9	2.8–3.1	3.7–4.2
Cereal Straws	1.1	7–9	1.9–2.5	2.6–3.1
Switchgrass	4.0	11–12	7.0–7.8	9.3–10.4
Miscanthus	5.1	9–11	8.9–10.0	11.8–13.3

DM Bulk Density Targets (point at which bulk density ceases to be a predominant limiting factor) :

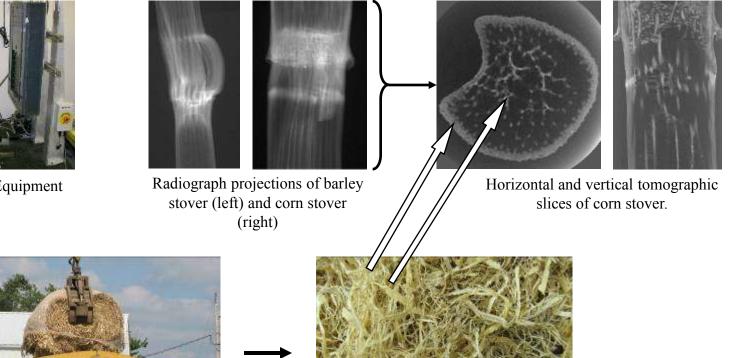
- Collection and Transportation
- Handling and Storage


=16 lbs/ft³ >30 lbs/ft³

Preprocessing Impact on Feedstock Quality Properties

biomass program

Material was ground using a commercial tub grinder in the field and separated in various size fractions using a forage separator


Corn Stover Radiography Tests

biomass program

 Radiography Techniques show internal structures and potential source of mechanical strength/weakness

Image Radiography Equipment

Un-ground corn stover left in tub

Real time fragmentation of corn stover in a grinder

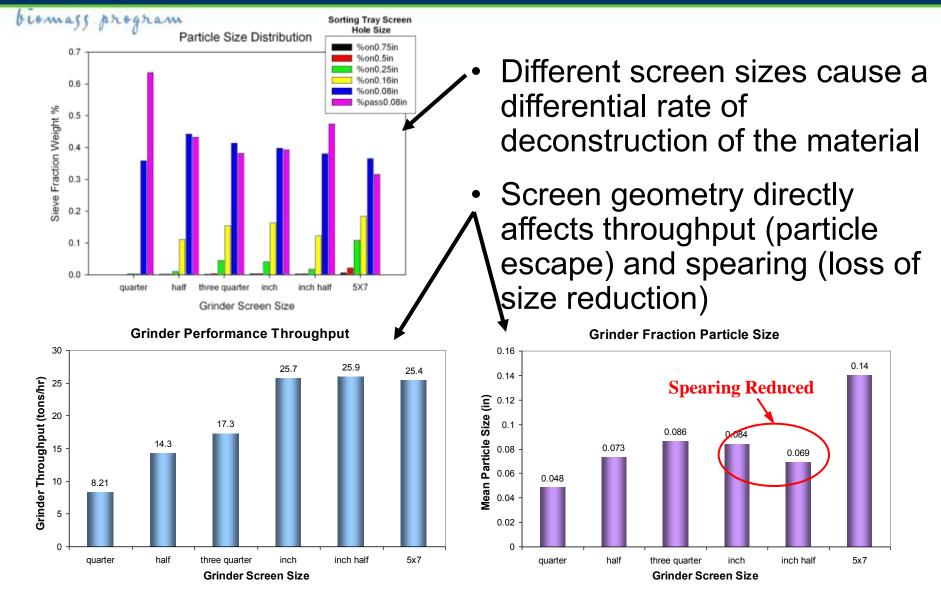
biomass program

Biomass Differential Deconstruction:

- Pith and other tissues rapidly deconstruct upon impact
- Rind and vascular tissues hold together under impact forces and require shear / torsion forces to effectively size reduce

Video of Operating Grinding Drum – 30 fps

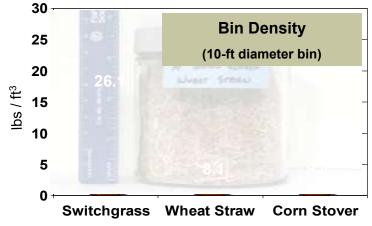
biomass program


U.S. Department of Energy Energy Efficiency and Renewable Energy

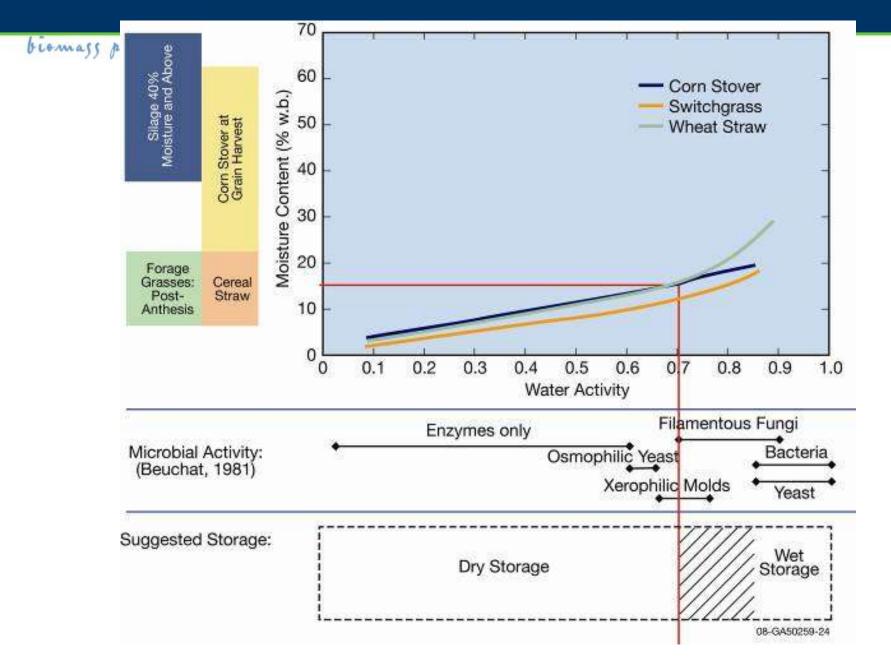
Real-time video of grinding Miscanthus

beemass program

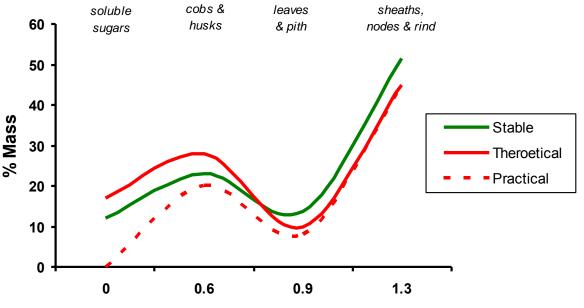
Preprocessing Deconstruction Characteristics


Differential Properties of Preprocessed Biomass Materials

Feedstock (¼-inch minus)	Switchgrass	Wheat Straw	Corn Stover		
Mean Particle Diameter	0.276 mm	0.498 mm	0.346 mm		
Particle Size Distribution (wt%)	29.4% > 0.85 mm 0.212 mm < 50.7% < 0.85 mm 18.6% < 0.212 mm	41.6% > 0.85 mm 0.212 mm < 46.9% < 0.85 mm 10.3% < 0.212 mm	24.9% > 0.85 mm 0.212 mm < 56.1% < 0.85 mm 16.9% < 0.212 mm		
Bin Density (10-ft diameter bin)	26.1 lbs/ft ³	8.1 lbs/ft ³	9.4 lbs/ft ³		
Compressibility18%(Δ% 0-500 lb/ft²)18%		31%	35%		
Flowability Factor	5.7 (easily flowing)	1.1 (cohesive)	1.2 (very cohesive)		
Permeability	0.27 ft/sec	0.83 ft/sec	0.18 ft/sec		
Springback 4.1 %		7.6 %	5.6 %		
Angle of Repose	33.6 degrees	35.4 degrees	35.3 degrees		



Wet versus Dry Biomass Effects



Storage and Queuing R&D

biomass program

R&D Details:

- Assess soluble sugar capture systems
- Expand wet design concepts for \$35 target
- Assess performance of key storage systems
- Investigate function / composition tradeoffs (*i.e.*, can we stabilize & destabilize together?)
- Extend dry systems for use in wet climates

Feedstock Recalcitrance

<u>Biomass</u>	<u>Compositional Quality</u> % structural sugars (Δ \$/ton)	<u>Functional Quality</u> % xylan yield (Δ \$/ton)	
Unstored Whole Stover	60.8% (baseline)	ND	
Bunker-Most Stable	51.9% (- 10.3)	ND	
Bunker-High Least Stable	47.9% (- 16.0)	ND	
Unstored Cobs	71.7% (baseline)	70.0% (baseline)	
Cobs	69.3% (-2.21)	73.5 (\$1.35)	
Unstored Leaves	75.3% (baseline)	72.1% (baseline)	
Leaves	59.3% (-16.0)	69.4% (-\$1.04)	
Unstored Stalks	64.9% (baseline)	52.7% (baseline)	
Stalks	59.2% (-6.5)	56.8% (\$1.57)	

Opportunities for Quality Changes

Harvesting

- Use single pass harvesting to minimize contamination
- Selective harvest
 - Plant fractions with varying compositional qualities
- Schedule harvest
 - minimize moisture content
 - alter mineral content
 - lignin to cellulose ratio

Preprocessing

- Grind to smaller particle sizes to increase bulk density
- Alter particle shape factors
- Selectively screen and separate to increase quality

Storage/Queuing

- Reduce dry material losses
- Apply pretreatments to impact physical properties
- Leach out contaminates

Physical Properties

Key Feedstock Attributes Summary

biomass program

Attributes

Moisture

Conversion System Impact

Heat and mass transfer Energy balance Product composition

Assembly System Impact

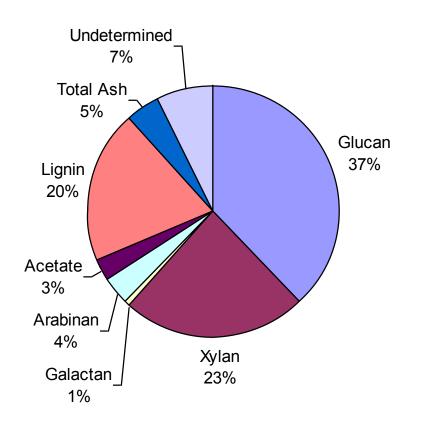
Grinding Efficiency Transportation economics Feeding and Handling Efficiency Storage Stability

Particle Size Shape Density Porosity Permeability Thermal Conductivity Heat Capacity Thermal Diffusivity Emissivity Feeding and entrainment Solids loading Heat and Mass Transfer Reactivity Acid pretreatment Devolatilization Kinetics

Grinding Efficiency Storage capacity Feeding and Handling Efficiency Drying Efficiency Transportation Economics

Key Attribute Summary Cont.

Attribute	Conversion System Impact	Assembly System Impact
Chemical Properti	es	
Fixed Carbon	Reactivity	
Volatile Matter	Product yield	
O:C ratio	Energy Content	
H:C ratio	Tar Formation	
Cellulose:lignin	Ethanol yield	
Ν	NO _x Production	
S	Fuel Quality, Catalysis activity	, Lifetime
CI	Facilitates Ash Formation, Co	rrosion
Ash	Lowers Energy Density Acid treatment buffering	Equipment Wear
Si	System Fouling	
Na	Ash Softening	
K	Corrosion, Erosion	
Mg	Catalytic properties	
P	Decomposition Temperature	
Ca	Influences Product Distribution	
Fe	and Yield	-


Stover Characteristics

biomass program

 Average chemical composition

 Variability of composition

Corn Stover Composition

Images of Feedstock Size Fractions

biomass program

The process of size reduction does not randomly reduce all the different components of biomass materials in a uniform manner

- Different size fractions may differ significantly in their chemical properties
 - partial separation of inorganic and organic matter

U.S. Department of Energy Energy EPreprocessing Impact on Feedstock Biochemical Quality

Tray 2			Tray 4	Tray		Pan		
	Grinder Screen 2-inch	GLUCAN (%)	XYLAN (%)	GALACTAN (%)	ARABINAN (%)	Total Sugars	MES	
	No Screen	36.57	16.68	0.91	1.70	55.86	1.2	
	Tray 2	39.74	16.77	0.78	1.36	58.65	1.19	
	Tray 3	39.08	16.98	0.79	1.44	58.29	1.2	
	Tray 4	37.80	16.99	0.84	1.54	57.18	1.2	
	Tray 5	36.11	17.24	1.00	1.64	55.99	1.2	
	Tray 6	31.76	16.04	1.32	1.83	50.95	1.3	
	Pan	22.39	11.93	1.82	1.80	37.94	1.8	

Preprocessing Impact on Feedstock Thermochemical Quality

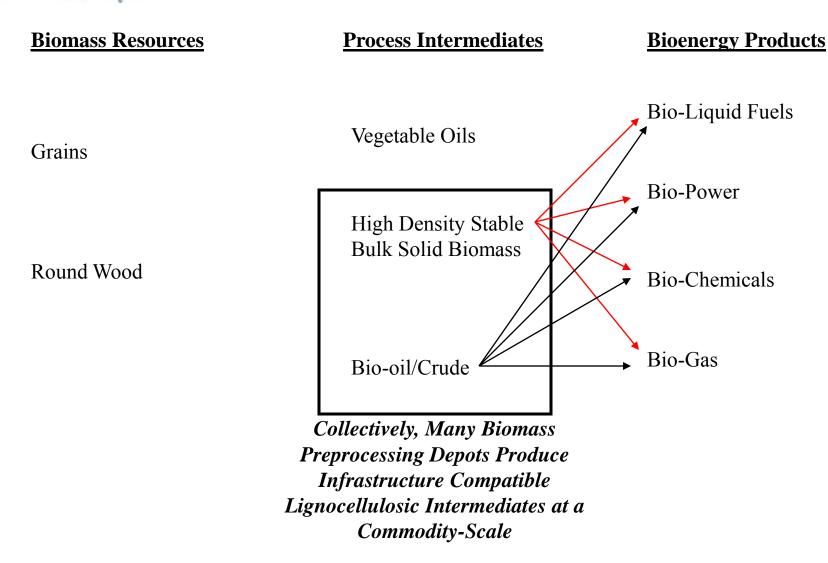
biomass program		No	Tray	Tray	Tray	Tray	Pan
		Screen	3	4	5	6	i an
	Proximate Analysis (% dry fuel)						
	Fixed C	11.06	12.17	12.73	13.37	12.68	11.63
	Volatiles	70.40	85.29	84.25	82.37	78.43	79.87
	Ash	18.54	2.54	3.02	4.26	8.89	8.50
	Ultimate Analysis (% dry fuel)						
	С	41.60	49.79	49.63	49.12	46.69	46.93
	Н	4.98	5.73	5.72	5.69	5.41	5.44
	O (Diff.)	34.25	41.75	41.39	40.70	38.65	38.83
	N	0.57	0.16	0.17	0.18	0.29	0.24
	S	0.06	0.03	0.07	0.05	0.07	0.06
	CI	0.016	0.023	0.018	0.022	0.016	0.016
	Elementa	I Compo	sition o	of Ash (%	6)		
	SiO ₂	79.17	69.07	70.67	72.21	77.32	77.31
	K ₂ O	2.44	9.45	7.67	6.09	3.52	3.68
	NaO ₂	0.59	0.36	0.63	0.38	0.85	0.55
	MgO	0.89	2.68	2.55	1.82	1.40	1.31
	CaO	2.71	4.92	4.86	4.36	3.20	2.88
	P ₂ O ₅	0.88	3.95	3.30	2.62	1.42	1.40
	Fe ₂ O ₃	2.76	1.83	2.02	2.35	2.67	2.81
	AI_2O_3	6.20	2.80	3.71	4.02	5.68	5.92
	TiO ₂	0.36	0.22	0.21	0.21	0.31	0.31
	Higher He		· · · ·	-			
	HHV	6906	8050	8146	7944	7743	7705

- Feedstock supply system is most sensitive to physical property attributes
 - Moisture
 - Bulk density
- Conversion systems are most sensitive to compositional attributes
 - Carbohydrate
 - Lignin
 - Ash
- Conversion systems may also be sensitive to physical properties, depending upon process design
 - Moisture
 - Particle size and size distribution

- Corn stover removal causes real issues with sustainable agricultural practices, but prescriptive removal tools and selective harvest technologies can address these issues.
- Initially, new corn stover biorefineries will operate with conventional (dry) forage supply systems or employ corn cob only technologies
- Baled-based systems (i.e., conventional forage technologies) cannot simultaneously meet
 - 2012 and beyond cost targets (< \$32.80 per dry ton)
 - 2030 tonnage targets (600-700 million dry tons annually)
- Lignocellulosic biomass supply systems must be developed into commodity-scale systems based on advanced uniform formats. Corn cob system represent a 1st generation implementation of such.
- Densification and moisture management is key to performance
- Harvest and supply system losses must be minimized
- Single pass harvest methods will improve system performance

biomass program

1st Generation Pioneer Systems


- Selective Harvest/Prescriptive removal address sustainability
- Dry Feedstock System
- Locate in dry high productive Corn Belt Region (north/west regions)
- Square Bale with conventional equipment
- Corn Cob only supply systems for wetter or sustainably sensitive regions

Advance-Uniform Supply System

- Cover Crops, Energy Crops, and Improved Corn Crop Genetics solve sustainability issues
- Single Pass Harvester
- Multiple Resources (e.g., corn stover and energy crops together)
- Active moisture mitigation/material stabilization
- Material Bulk and Energy Densification
- Commodity-Scale Solid and/or Liquid based supply systems

Feedstock Logistics Research Focus – Commodity-Scale Process Intermediates

U.S. Department of Energy Energy Efficiency and Renewable Energy

Biorefining Depends on Feedstock

