Wind Turbine Aerodynamics:

Simulation & Validation

C.P. (Case) van Dam Warren and Leta Giedt Endowed Professor Mechanical & Aerospace Engineering University of California, Davis

LANL 2011 Wind Engineering Workshop Modeling of Turbine-Turbine Interactions with Experimental Validation Los Alamos National Laboratory, Los Alamos, NM

2-3 March 2011

Acknowledgments

- Raymond Chow
 - PhD student UC Davis, CFD simulations
- Matt Brunner
 - MS student UC Davis, white paper "Advances in Wind Turbine Far-Wake Computations and Measurements"
- Syta Saephan
 - PhD UC Davis, now consultant, initial NREL 5-MW grid generation & simulations
- NREL, ECN, Risø
 - NREL Phase VI database
 - NREL 5-MW/UpWind rotor information
- Funding
 - Sandia National Laboratories, Albuquerque
 - PIER program, California Energy Commission

LANL 2011 Wind Engineering Workshop

Wind Turbine Aerodynamics: Simulation & Validation

- Overview
- NREL Phase VI Experiment
- Mexico Experiment
- NREL 5-MW Turbine
- Concluding Remarks

Turbine - Turbine Interactions

San Gorgonio Wind Resource Area Source: Field, 2008

LANL 2011 Wind Engineering Workshop

Turbine - Turbine Interactions

Horns Rev windplant Source: www-ict.aeolus.eu

LANL 2011 Wind Engineering Workshop

Turbine-Turbine Interactions

- Turbine-turbine aerodynamic interactions can be strong depending on:
 - Turbine spacing
 - Rotor tip speed ratio (TSR)
 - Rotor aerodynamic loading
 - Atmospheric conditions
- Problem has been recognized since development of first windfarms in 1980s
- Recently moved back to the forefront because of underperformance of large windplants
- Focus of this presentation is on validation of turbine aerodynamics

LANL 2011 Wind Engineering Workshop

Validation: NREL Phase VI Rotor

- NREL UAE dataset
- Tested in 80 ft x 120 ft closed test section of National Full-Scale Aerodynamics Complex at NASA Ames
- Upwind & downwind 2bladed rotor
- 10.06 m diameter
- S809 airfoil
- Linear twist
- Linear taper

72 RPM

Source: NREL

LANL 2011 Wind Engineering Workshop

7 🕕

Validation: NREL Phase VI Rotor

Phase VI Grids

- Viscous wall spacing ~0.3 y⁺
 - $-U_{tip} \approx 40 \text{ m/s}$
 - $-\operatorname{Re}_{\operatorname{tip}} \approx 1.0 \mathrm{x} 10^{6}$
 - -y⁺≈ 7.4x10⁻⁶ m

Contraction of the second

- $-\Delta y_{wall} \approx 2.5 \text{x} 10^{-6} \text{ m}$
- Far-field 200 m (20 diam.) away

-400×400×400 m Cartesian domain

LANL 2011 Wind Engineering Workshop

Validation: Phase VI at $U_{\infty} = 10 \text{ m/s}$

NREL Phase VI Conclusions

- Phase VI at 5, 7, 13 m/s accurately predicted
 - Inboard separation (5 m/s), fully attached (7 m/s), separation (13 m/s)
- Time-accurate solutions are definitely required to capture unsteady separated flow
- Full dynamic simulations may not be necessary to achieve required aerodynamic accuracy
- Time-step ~2×10⁻³DT with 20 sub-iterations
 ~2000-5,000 time-steps per rev
- Grid resolution ~10+ million

Validation: EU Mexico Project

- EU project involving 10 institutes from 6 countries
- Tested in 9.5 m x 9.5 m open section of DNW LLF
- 3-blade upwind rotor
- 4.5 m diameter
- 324.5 or 424.5 RPM
- Boundary layer trips
- Speeds from 10 to 30 m/s
- Design TSR = 6.67 @ 15 m/s and 424.5 RPM

LANL 2011 Wind Engineering Workshop

Mexico Experiment Rotor Blade

NREL 5-MW Rotor

- 126 m rotor diameter
- 12.1 RPM
- 3 m hub diameter
- 61.5 m blade length
- 4.7 m max chord
- 13.3° inboard twist
- 3 m/s cut-in speed
- 25 m/s cut-out
- 12 m/s rated speed

LANL 2011 Wind Engineering Workshop

