SNL Structural Modeling Overview

LANL Wind Energy Engineering Workshop March 2011

Brian Resor

Senior Member of the Technical Staff, Design Tools Lead Wind Energy Technologies Department Sandia National Laboratories brresor@sandia.gov (505) 284-9879

SANDIA NATIO

Outline

- Background of blade concepts at Sandia
- Blade structural design and analysis
- Wind turbine system analysis
- Experiments for blade and system model validation
- Improving models using experimental data
- List analysis tools used in the industry
- Topics for future modeling and simulation

Innovative Blade Research: Major Focus

- Innovations that lead to longer & lighter blades that reduce COE
- Working with industry, have designed, built & tested several blade prototypes to demonstrate a variety of innovations

Rotor & Blade Innovation

Historical SNL Research Blades

Fatigue Damage Reduction

Wind Speed (m/s)	Relative Damage Rate (%)	Relative Damage Equivalent Load (%)
7-9	-53.8%	-7.4%
9-11	-69.1%	-11.1%
11-13	-93.6%	-24.0%

Fatigue Damage Summary (TX vs. CX)

Results of Ultimate Load Tests

Structural Efficiency: Geometry

- Flatback airfoils created by symmetric expansion about camber line
- Less soiling sensitivity than other thick foils
- Higher structural efficiency
 - Delayed Buckling → better material usage at failure

Structural Properties

Property	CX-100	TX-100	BSDS
Root Failure Moment (kN-m)	128.6	121.4	203.9
Max. Carbon Tensile Strain at Failure (%)	0.31%	0.59%	0.81%
Max. Carbon Compressive Strain at Failure (%)	0.30%	0.73%	0.87%

Effect of Soiling

Knight & Carver STAR Blade

- **Cost-shared project "Sweep-Twist Adaptive Blade" began in November 2004**
- Goal use geometric sweep to reduce loads through passive bend twist coupling
 - Enables a larger rotor for a given design, leading to an overall increase in energy capture
 - 2.6 meter longer blade (24.5 → 27.1)
 - Predicted 5-8% increase in overall energy capture

Advanced Rotor Development: 100-m Sandia Blade Design

 Goal: Provide technology research to produce innovations and advanced design concepts to develop very large utility-grade blade and rotor designs for offshore and onshore (where possible).

60 meters = 196'			
	100 meters = 328'		
		150 meters = 492'	
6' human scale			

Methodology:

- Develop and apply scaling laws to scale-up of 5 MW turbine system.
- Create 13.2 MW Sandia Baseline (100 m long blade) with detailed composite laminates
- Apply innovative concepts to baseline to reduce weight, and improve performance & cost effectiveness
- Partners: European UpWind Program and NREL

Challenges & Opportunities for Large Blade Development

Challenges:

Blade weight growth

Manufacturing & reliability issues

Material volumes & cost

MASA

Transportation

Opportunities:

Very thick airfoils for structural efficiency Material lay-up & choices Multidisciplinary design optimization Blade joints Load alleviation concepts (active & passive)

Other innovations

Outline

Background of blade concepts at Sandia

Blade structural design and analysis

- Wind turbine system analysis
- Experiments for blade and system model validation
- Improving models using experimental data
- List analysis tools used in the industry
- Topics for future modeling and simulation

Wind Turbine Design/Analysis Elements

Blade Design with NuMAD

NuMAD

NuMAD: Numerical Manufacturing And Design Tool

Blade Geometry

Materials & Layups

w 4.68921.90	DblBias		
pe 1,100000,10	Balsa		
ne 2, 6 00 (21, 90	DblBias		
w (.0000). W	Mat	Bade Edenior	

Stack Placement

ANSYS FE Model

ANSYS Analysis

NuMAD Geometry and Materials

Use of Offset-Thickness Shell Nodes

 Offset-thickness nodes are most desirable for wind turbine blade FE models because the outer blade surface is the specified surface

Figure 2. Schematic of physical representation of layered shell elements with nodes positioned at the mid-thickness.

Figure 3. Schematic of physical representation of layered shell elements with nodes offset to the bottom surface.¹

Figure 4. Blade cross-sections with nodes located at the exterior surface (a) and the mid-thickness (b).

Example ANSYS Analyses

Modal

Strains

Sandia National Laboratories

View material failure

- Ultimate
- Fatigue

Wind turbine blades include

- Variable section shapes with twist,
- Multiple materials and composite layups (glass, carbon, balsa, foam, epoxy, adhesives)
- One or more shear webs

Blade Structural Model Simplification

> Beam Model: Up to 6 DOF per node

(Colors represent composite stacks) SAND 2011-1381 C

Calculate Beam Properties

Comparing three techniques: BPE, 2D Section & VABS

0.6

0.4

BIFract

0.8

10

10²

0.2

10³

10²

0.2

0.4

BIFract

0.6

0.8

Mass Dens.

0.4

BIFract

0.6

0.8

0.2

100

tories

Torsional Stiffness and Flutter

How sensitive is flutter speed to torsional stiffness?

Inputs used in classical flutter prediction

Parameter	Description			
EI_flap	Flapwise bending stiffness			
EI_edge	Edgewise bending stiffness			
GJ	Torsional stiffness			
Twist	Blade pretwist			
Tiner	Torsional inertia			
LCS Lift curve slope				
Elastax	Distance along the chord the elastic axis is aft of the			
	pitch axis			
Aerocntr Fraction of the chord that the aerodynamic cer				
aft of the leading edge.				
Masscntr Distance the mass center is aft of the elastic axis				
Chord	Section chord length			

Sandia Classical Flutter Capability

Current capability utilizes:

- MSC.Nastran 2005
- FAST2NAST.m (Matlab routine)
 - Required inputs: lift curve slope and pitch axis location along with information taken from ad.IPT and blade.DAT files utilized by FAST
- Fortran executable
 - Determines necessary mass, stiffness, and damping matrix additions due to aerodynamic effects (Theodorsen)
 - Generates additional Nastran decks for the complex eigenvalue solve
- Iterates on operating speed, following the complex modes, to find the flutter speed

$[M + M_a(\Omega)]\{\ddot{u}\} + [C_c(\Omega) + C_a(\omega, \Omega)]\{\dot{u}\} + [K(u_0, \Omega) + K_{tc} + K_{cs}(\Omega) + K_a(\omega, \Omega)]\{u\} = 0$

Matrix	Description
M, C, K	Conventional matrices (with centrifugal stiffening)
$M_a(\Omega), C_a(ω, Ω), K_a(ω, Ω)$	Aeroelastic matrices
$C_{C}(\Omega)$	Coriolis
K _{cs} (Ω)	Centrifugal softening
K _{tc}	Bend-twist coupling

Outline

- Background of blade concepts at Sandia
- Blade structural design and analysis
- Wind turbine system analysis
- Experiments for blade and system model validation
- Improving models using experimental data
- List analysis tools used in the industry
- Topics for future modeling and simulation

Importance of System Analysis

- Full system analysis is required in order to evaluate the capability of the design to withstand loads prescribed by certification standards
- It is just as important to understand and report the cost of an innovation as well as the benefit; Common system costs include
 - Increased forces and moments in the system
 - Increased complexity
 - Decreased energy capture

 $COE = \frac{FCR * ICC + (O \& M)}{FCR + ICC + (O \& M)}$ AEP

Design Criteria Examples

Design Requirements

- Usually governed by IEC or GL Standards
- Conditions:
 - 20 year minimum design life
 - Normal wind conditions
 - Extreme wind conditions
 - Wind defined by average wind speed and turbulence intensity

Loads

- Ultimate loads can the system withstand the largest expected loads?
- Fatigue can it withstand the combination of all loads?
- Functional requirements deflections (tower clearance)

Example Load Cases

- Normal production: Fatigue and/or ultimate loads due to
 - Normal turbulence
 - Extreme turbulence
 - Extreme gust
 - Extreme wind speed
 - Extreme direction change
 - Extreme wind shear
 - Start up and shut down
- Normal production with faults
 - Yaw system fault
 - Pitch system fault
 - Loss of electrical load, etc.
- Parked Turbine
 - Extreme loads
 - Normal loads
- Transportation loads

Analyze System Response w.r.t Fatigue

Percent Change in	9	11	18	Avg.Wind	Avg.Wind	
Equivalent Fatigue Load	m/s	m/s	m/s	5.5111/8	/ 111/ S	
Low Speed Shaft Torque	-1.7	-4.9	-33.5	-3.1	-7.3	
Blade Root Edge Moment	1.7	1.9	-2.5	0.8	0.8	
Blade Root Flap Moment	-31.2	-27.1	-30.4	-23.1	-26.3	
Tower Base Side-Side Moment	-0.1	-8	-7.2	-0.9	-2.9	
Tower Base Fore-Aft Moment	-18.6	-16.5	-13.8	-5	-8	
Tower Top Yaw Moment	-53.2	-42.9	-43.4	-25.1	-32.2	

Laboratories

Buckling in ANSYS

Apply forces to nodes using aeroelastic simulation data

WindPact

SAND

.163E-03

.813E-04

.325E-03

.244E-03

.488E-03

.407E-03

.651E-03

.732E-03

.569E-03

Wind Turbine Design Tools in Use at Sandia

Design & Test Loop at SNL

Example 1

Micon turbine with 9m CX-100 blades

Micon Tower Modal Analysis

Simmermacher et al. (1999) Performed Impact Test of Tower "C"

CX-100 Modal Analysis

Impact Test of Free-free CX-100 Sensored Rotor Blade

Mada	Experimetnal Frequency (Hz)	Analytical Beam Frequency (Hz)	Differ	anco	Description	
Mode					Description	
I	8.2	8.30	1.0	%	1st Flap Bending	
2	16.8	17.17	2.39	%	1st Edge Bending	Potr
3	20.3	18.96	-6.5	%	2nd Flap Bending	y, v, lead-lag
4	33.8	34.22	1.19	%	3rd Flap Bending	
5	42.2	42.19	0.0	%	2nd Edge Bending	x, u, flap
6	52.2	56.77	8.8	%	4th Flap Bending	z, w, span

Inflow Wind

Micon 65/13M Wind Turbine Modal Analysis

Impact Test of Micon 65/13M Wind Turbine at Rest

Wind Speed Profile During Test

Ambient Excitation Makes Experimental Testing Difficult

Micon 65/13M Model Comparison

	Experimental	Rigid LSS				
Mode	Frequency (Hz)	Frequency (Hz)	% Diff.	Description		
1	1.30	1.33	2.3%	1st Side-Side Tower		
2	1.34	1.35	0.7%	1st Fore-Aft Tower		
3	3.19	3.31	4.0%	1st Rotor Torsion		
4	3.26	3.61	10.8%	1st Flap Antisymmetric (about vertical axis)		
5	3.45	4.21	22.2%	1st Flap Antisymmetric (about horizontal axis)		
6	4.51	4.29	-4.9%	1st Flap Symmetric		
7	5.35	5.86	9.6%	1st Edge Symmetric, In-phase		
8	5.51	6.00	8.9%	1st Edge Symmetric, Out-phase		
9	6.57	6.52	-0.7%	2nd Flap Antisymmetric (about vertical axis), Tower In-phase		
10	7.17	10.13	41.2%	2nd Flap Antisymmetric (about horizontal axis), Tower In-phase		
11	10.01	11.35	13.4%	2nd Flap Antisymmetric (about horizontal axis), Tower Out-phase		
12	10.34	10.96	6.0%	2nd Flap Antisymmetric (about vertical axis), Tower Out-phase		
13	11.49	10.90	-5.1%	2nd Flap Symmetric		
14	15.41	14.85	-3.6%	2nd Rotor Torsion		
		Average	7.48%			
		1 Std. Dev.	12.39%			

and they

System Model Additions

Develop Single Element Flexible LSS Model

Yaw Bearing and Brake Bending Flexibility was Un-modeled

Model Update Results

Example 2

BSDS Blade

BSDS Experimentally Determined Properties

Flap-wise stiffness distribution determined using three approaches

- (a) Static load-deflection testing
- (b) Free boundary condition modal test
- (c) Root boundary condition modal test: seismic mass on airbags
- Mass properties were measured directly from sliced sections of a BSDS blade which had been tested to failure

D.T.Griffith, et.al., SNL

Compare Analysis and Experiment

Flapwise bending stiffness

Mass Distribution

Free-Free Beam Model	BSDS Hardware (Actual)	BPE	BPE/Hardware % Difference
Mass (kg)	127	105.6	-16.8%
1st Flap (Hz)	5.25	5.43	3.4%
2nd Flap (Hz)	13.5	12.9	-4.4%
1st Edge (Hz)	17.2	14.0	-18.6%
3rd Flap (Hz)	24.5	23.8	-3.1%

Outline

- Background of blade concepts at Sandia
- Blade structural design and analysis
- Wind turbine system analysis
- Experiments for blade and system model validation
- Improving models using experimental data
- List analysis tools used in the industry
- Topics for future modeling and simulation

Blade Modeling Tools - Worldwide

Focus6

- Commercially available in modules from Knowledge Centre WMC & ECN, The Netherlands
- ANSYS and ANSYS ACP

Abaqus

VABS

 There are several different efforts to look at design environments that take advantage of VABS

Focus6

ANSYS ACP

Aeroelastic Simulation Tools - Worldwide

- Bladed, Garrad Hassan, UK
 - Mainstream tool
- Focus 6, WMC/ECN, The Netherlands
 - Mainstream tool
- HAWC2, Riso National Lab, Denmark
- Flex5, DTU
- FAST and AeroDyn, NWTC-NREL, United States
 - Very popular in the research community
- MSC.ADAMS and AeroDyn
 - Used in some of the more challenging/innovative projects
- Full Blade FE Model coupled with multibody dynamics (and possibly CFD)
- DU_SWAMP, TU-Delft, The Netherlands
 - Simulink-based multibody dynamics for advanced controls simulation
 - A very young code

SNL Structural Tools Activities Moving Forward

In order of completion; near-term first

- Application of blade loads from aeroelastic simulation to the NuMAD/ANSYS finite element blade model
- Implementation of NuMAD in Matlab: Experiencing increased usage by industry and researchers
- Creation of a parametric wind turbine system analysis toolbox in Matlab: For highly effective setup, execution and analysis of a very large numbers of simulations
- Detailed structural models from NuMAD: i.e. Brick elements

Future research areas

- Passive and active fatigue load mitigation concepts
- Damage and defect modeling
- Full system aeroelastic stability

