Intelligent Wind Turbines

Laboratory Directed Research and Development at Los Alamos National Laboratory

Curtt Ammerman (PI) Applied Engineering & Technology Division

Rod Linn (Co-PI) Earth & Environmental Sciences Division

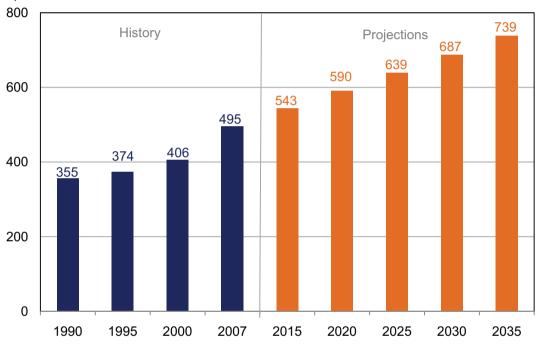
Gyuhae Park (Co-PI) Engineering Institute

3-Year Project Funding Profile

FY10:	\$1.81M
FY11:	\$1.78M
<u>FY12:</u>	\$1.65M
	\$5.24M

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA


LA-UR-11-01246

Why is Wind Energy Important for the US?

World marketed energy consumption, 1990-2035

quadrillion Btu

July

Oct.

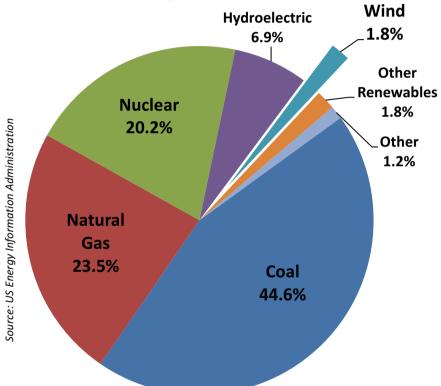
Jan.

70

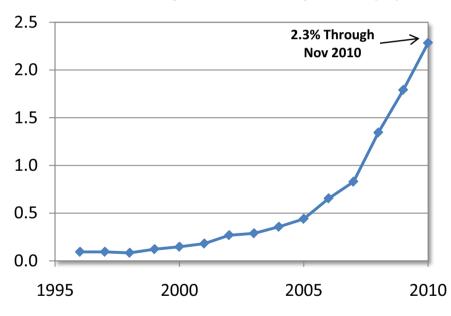
60

Mar. Apr

Administration Goals


- Reduce carbon emission 50% by 2030, 80% by 2050
- Reduce oil consumption 50% by 2030, 80% by 2050
- Stimulate jobs and economic recovery through renewable energy development

DOE Wind Program Goals


- Grow wind power deployment to meet future energy demand
- Lower Wind COE through innovation and reliability improvements

U.S. Electricity Generation (2009)

US Electricity Generated by Wind (%)

Cost of Energy is Major Barrier to Wind Deployment

Challenges to Overcome in Wind Energy

- Increasing blade cost & weight
- Blade failures & reliability concerns
- Drivetrain/gearbox failures
- Need for efficiency improvements
- Wind project underperformance
- Reliability and maintenance

Desired Benefits from Targeted R&D

- Increased turbine performance
- Increased plant performance
- Increased turbine reliability
- Decreased turbine costs
- Innovative products

DOE's Goal is to Reduce Cost of Energy 20% by 2020

Why Study Wind Turbines at Los Alamos?

- Directly supports LANL's energy security mission
 - promotes clean energy concepts
 - mitigates impact of global energy demand
- We are uniquely positioned to contribute
 - HPC wind turbine and plant simulation
 - structural health monitoring
 - model validation and verification
 - large-scale technology integration
- Complements DOE's wind energy strengths
 - LANL is working collaboratively with other National labs,
 - industry, and academia

Our Research Is Centered On Turbine Blades

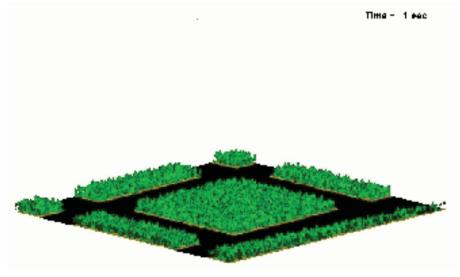
• Why start with the turbine blades?

- blades failure rates are relatively high
- blades continue to grow in size, thus encounter more severe dynamic loading
- true wind loads on blades are not accounted for in design process
- blades are the origin for loads on the hub, gearbox, and generator
- We have a comprehensive engineering R&D program focused on wind turbines that is delivering
 - turbine/plant simulation with realistic wind loading
 - multi-scale sensing for damage detection and shape reconstruction
 - structural health monitoring (SHM) with damage prognosis
 - model validation and uncertainty quantification
 - enabling research to explore advanced control concepts
 - large-scale technology integration
 - wind collaborations with industry, National labs, universities

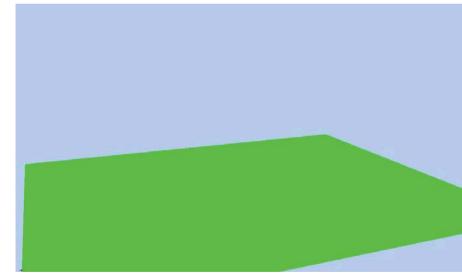
60 meters = 196'				
	100 meters = 328'	150 meters = 492'		
6' human scale				

The Project is Focused on 3 Major Deliverables

- Validated WindBlade turbine and plant simulation tool capable of modeling
 - true wind loading with turbulence on multiple scales (e.g. atmospheric, terrain, vegetation, upstream turbines)
 - blade and hub loading
 - damaged and undamaged aeroelastic rotors
 - control schemes
 - rotor power output
- Experimental wind turbine aerodynamics databases
 - new experimental techniques focused on needs of large-scale wind turbines
 - high-quality experimental datasets for code validation
- Prototype SHM hardware and software ready for tech transfer
 - active and passive sensing suite for damage detection, state awareness, and operational diagnostics
 - damage prognosis
 - energy harvesting techniques for wireless SHM nodes


Modeling Tools for Wind Turbine Design

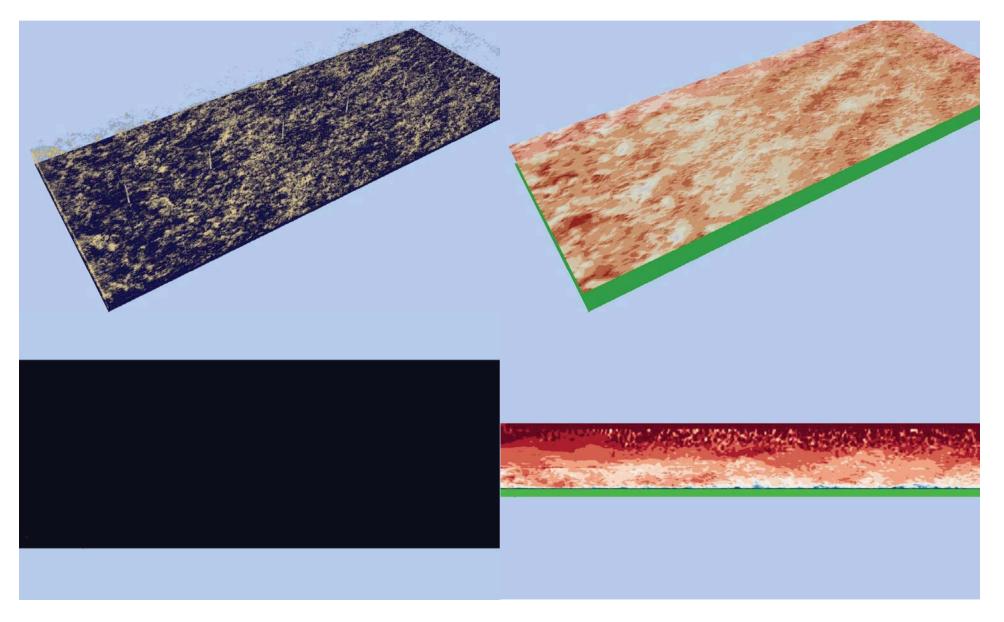
Designed for this...


...but experience this.

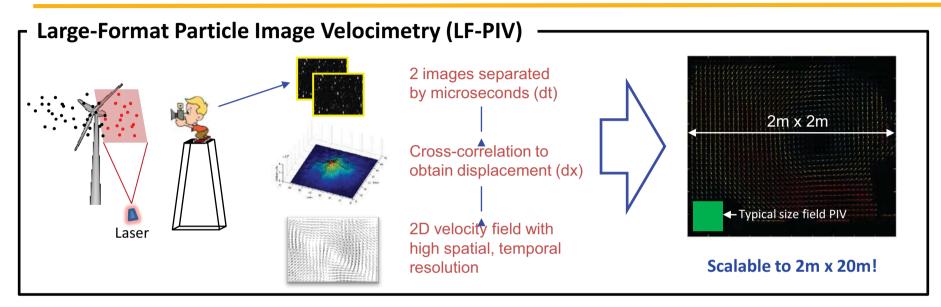
WindBlade: LANL's Turbine and Plant Simulation Code

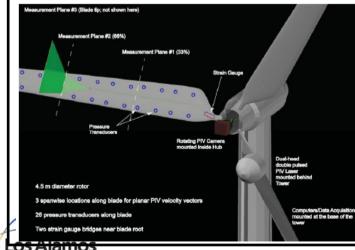
- Couples R&D 100-winning HIGRAD/FIRETEC with LANL's new turbine/wind interaction modeling technique, **WindBlade** (*patent pending*)
- Provides capability to study realistic wind interactions with multiple rotating turbines
 - fully compressible atmospheric hydrodynamics code
 - Lagrangian tracking scheme that accounts for 2-way feedback between winds and moving solid objects
 - resolves complex environments: topography, unsteady winds, severe weather, solar heating/unstable mixing
 - aeroelastic, fluid-structure interaction (FSI) capability will be able to extract dynamic loads on blades and towers

HIGRAD/FIRETEC Wildland Fire Simulation



WindBlade 9-Turbine Simulation (100m Diameter) Showing Turbulence-Induced Vorticity




Five, 126m-Diameter Turbines w/ 3D Spacing

We are Developing New Diagnostic Techniques to Measure Detailed Flows Around Wind Turbines

In-Blade Rotating PIV (DOE Contract: LANL/SNL)

- Camera mounted on hub

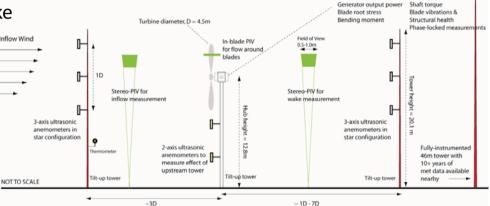
- Laser sheet projected perpendicular from blade

Provides:

- Details of blade boundary layer at all phases of blade revolution
- Time series of dynamic stall, separation, micro-tab performance, and 3D effects

Advantages of these Techniques

- Excellent spatial resolution
- Velocities in a plane instead of at a point
- Non-intrusive technique
- Measure flow near and around blades without interference
- Robust to weather conditions

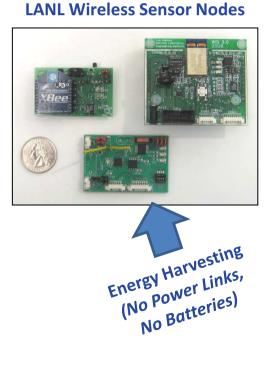

LOS AIGITIOS NATIONAL LABORATORY EST. 1943

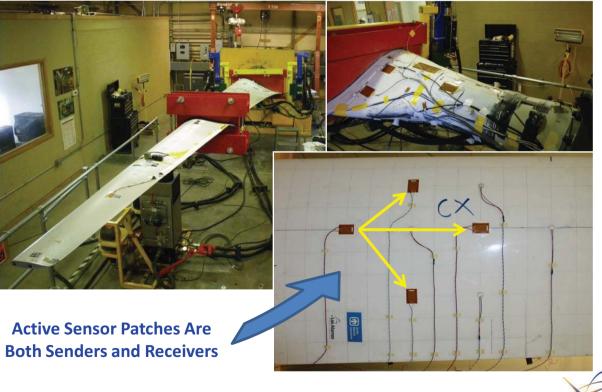
We are Characterizing Turbine Inflow, Near-Blade Flows, and Wake Regions with PIV

- Wind tunnel experiments using scaled turbines up to 0.2m diameter
 - PIV, hot wire, LDV \rightarrow inflow, wake profiles, power output, RPM
 - Laminar and turbulent inflow under yaw

- Fully instrumented field test of 4.5m-diameter turbine at LANL to include:
 - LF-PIV measurements of inflow and wake
 - In-blade rotating PIV measurements of flow around blades

 LF-PIV measurements on 20m-diameter turbine in field with LANL 9m blades

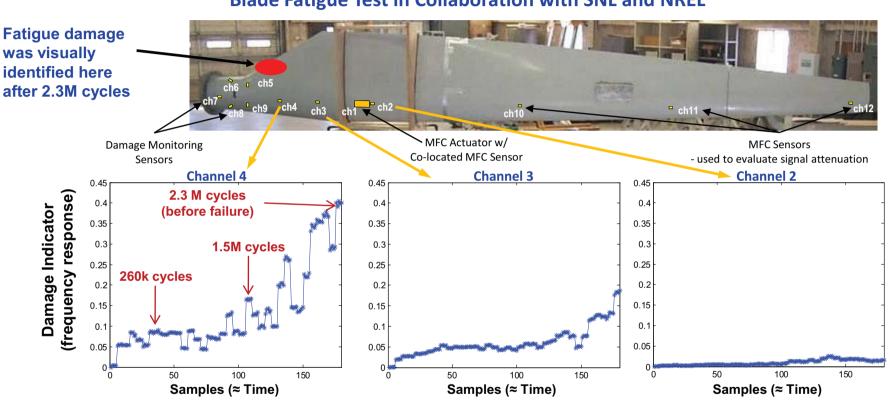

Turbine Blade Inspection



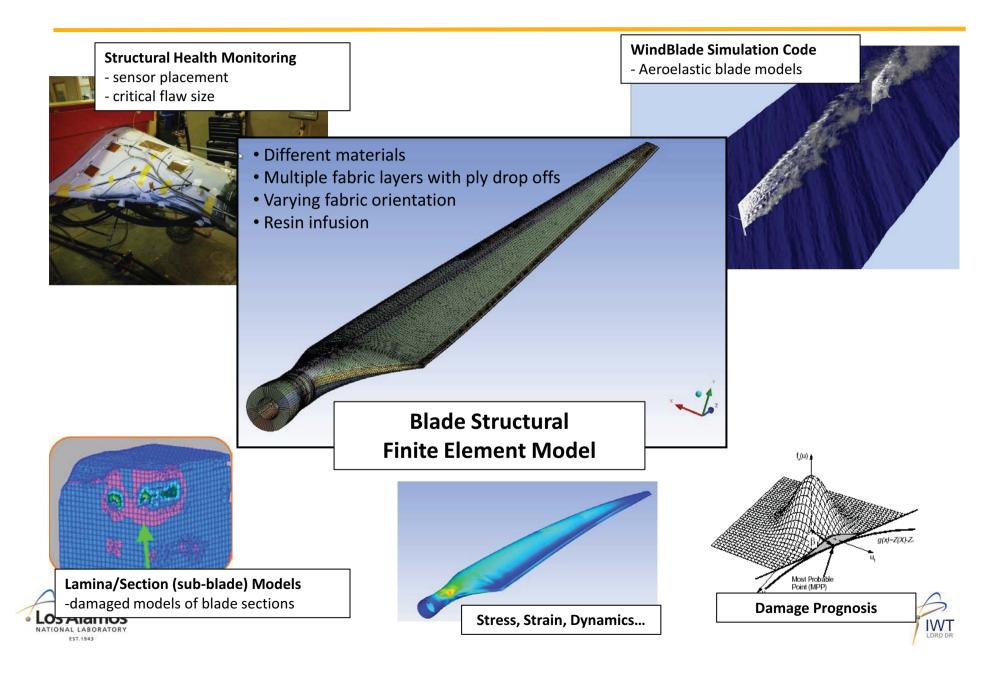
The Future of Damage Detection:

Real-Time Structural Health Monitoring (SHM)

- We are developing low-cost sensing systems to monitor blade health
- Embedded in each blade, this system will
 - Identify structural damage and monitor its progression
 - Predict remaining useful blade life (damage prognosis)



Active Sensing Detects Growing Crack In Blade


Blade Fatigue Test in Collaboration with SNL and NREL

- We proved damage and damage progression are detectable with our techniques
- We characterized transmission loss in composite blade as a function of frequency (100Hz 30kHz)
- In LANL fatigue test in May, we will focus on identifying **location** and **severity** of damage

Blade Structural Model Vital to Many Aspects of Project

Our Project Culminates with Full-Scale Flight Test

- Full range of instrumentation on three, 9-m blades
 - SHM Rotor Blade: High-frequency SHM techniques to monitor blade transition region
 - Blades 1-3: Low-frequency sensing in partnership with SNL (e.g. strain, acceleration)
 - Rotor Hub: Hub mounted camera for PIV measurements of airflow over SHM rotor blade
- Tower-mounted sensors to monitor upstream and downstream flow conditions
- Results fed into prognostic analyses and visualization algorithms to validate WindBlade and FE codes
- Proof of concept for validating embedded sensing

Major Accomplishments and Future Work

• Wind Turbine and Wind Plant Modeling and Simulation

- Integrated NREL's TurbSim into WindBlade as front end BC and investigating impact on wake effects
- Interfaced WindBlade with WRF model providing a path for validation with data from NWTC
- Developed adjoint version of fluid-structure interaction (FSI) code to study advanced control concepts
- Constructed FE model of 9m research blade and developed approach for incorporating into WindBlade
- Incorporate coupled plant-scale aeroelastodynamic modeling within WindBlade
- Perform WindBlade verification & validation studies

• Experimental Wind Turbine Aerodynamics

lamos

EST. 1943

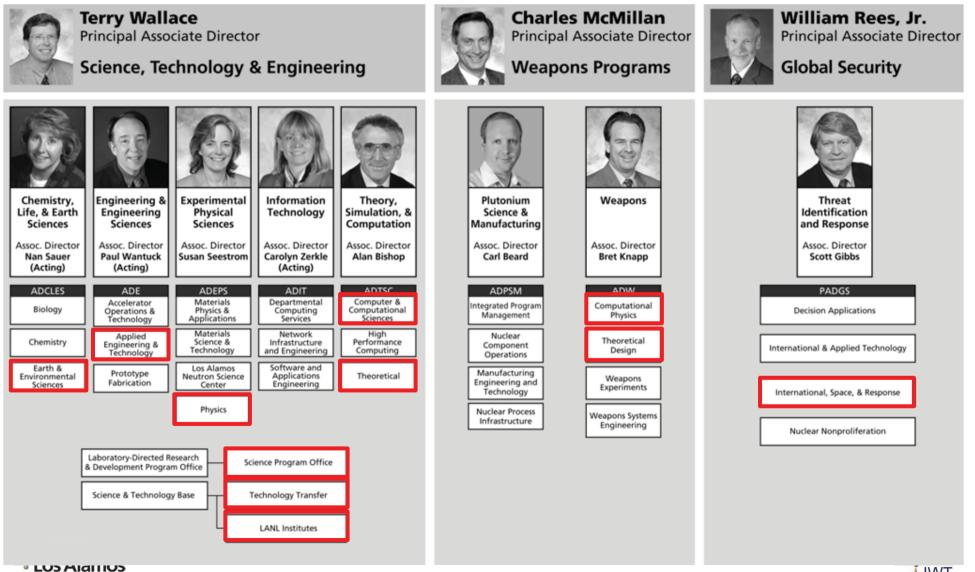
- Using PIV/hot wire/LDV in wind tunnel to measure turbine wakes: laminar/turbulent inflow under yaw
- Developed powerful new PIV techniques to measure turbine inflow, wake, and flow around blade
- Generating valuable datasets for understanding of wake physics and validation of turbine design codes
 - making available to research community on new LANL website
- Develop active grid for wind tunnel to enable systematic study of inflow shear and turbulence on wake
- Perform first-ever field test with 4.5m turbine to generate unprecedented reference datasets
 - measurements include PIV, CSAT3, RM Youngs, power output, structural response
- Apply LF-PIV to 20m turbine flight test in FY12 to provide first ever characterization of flowfields around large-scale, rotating turbine blade
- Multiscale Sensing and Turbine Blade Structural Health Monitoring (SHM)
 - Investigated different SHM diagnostic techniques that show promise for damage detection
 - Tested SHM hardware and software on full-scale fatigue test: detected damage and its progression
 - Developing low-cost, self-powered, wireless sensing node for blades: reducing weight, cost, power
 - Fatigue test LANL 9m blade at NREL this May: focus on identifying location and severity of damage
 - Custom fab 9m blades with built-in LANL sensors and fly operational prototype of SHM on 20m turbine

IWT

IWT Project Engineers Also Participate in Los Alamos Dynamics Summer School

- Proactive approach to training and recruitment of top students through an intense, 9-week summer school program
- Program goal: Get top engineering undergraduates enrolled in graduate school
 - Average GPA of these students: 3.8
 - Approx. 125/150 have gone on to grad school
 - 18 have completed their Ph.D.s
 - LANL has hired 14 Staff Members from this program
- Recent wind energy-related projects:
 - Structural Health Monitoring of a Floating Offshore Wind Turbine (2010)
 - Vibration Testing and Structural Damage Identification of Wind Turbine Blades (2010)
 - Structural Damage Identification in Wind Turbine Blades using Piezoelectric Active Sensing (2009)
 - Energy Harvesting to Power Sensing Hardware Onboard a Wind Turbine Blade (2009)
 - Real-Time Dynamic Measurements of a Wind Turbine Rotor Blade using Modal Filtering (2008)

Wind Turbine Senior Design Project


- Our IWT Project is sponsoring HMC Clinic project through a \$45k subcontract
- Team consists of 4 seniors and 1 junior for two semesters (Fall'10 thru Spring'11)
- Project Title: Wind Turbine Dynamic Modeling with Experimental Validation
 - Purchase and erect 4.5m turbine and tilt-down tower
 - Generate finite element model of composite blades
 - Develop multibody dynamics model of wind turbine and tower
 - Instrument the turbine and tower and take experimental data
 - Compare wind turbine modeling results with experimental data

Our Team Cuts Across Entire Laboratory

NATIONAL LABORATORY

Multi-Disciplinary Engineering Research Team

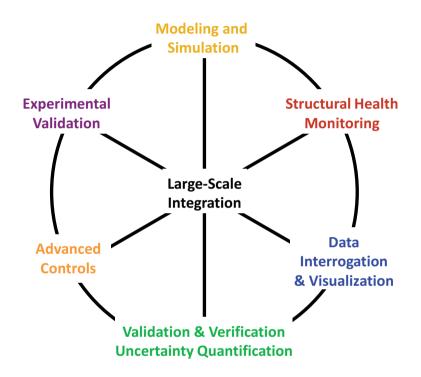
Modeling and Simulation

- C. Ammerman, Mechanical & Thermal Engineering Group
- G. Ellis, Mechanical & Thermal Engineering Group
- E. Koo, Computational Earth Sciences Group
- R. Linn, Computational Earth Sciences Group
- D. Luscher, Fluid Dynamics and Solid Mechanics Group

Sensing and Structural Health Monitoring

- T. Claytor, Non-Destructive Testing & Evaluation Group
- K. Farinholt, Mechanical & Thermal Engineering Group
- G. Park, Engineering Institute
- E. Raby, Space Data Systems
- S. Taylor, Engineering Institute

V&V/Prognosis/Data Management


- J. Ahrens, Applied Computer Science Group
- F. Hemez, Primary Physics Group
- D. Hush, Space and Remote Sensing Group
- J. Patchett, Applied Computer Science Group
- J. Theiler, Space and Remote Sensing Group

Controls

• M. Bement, Lagrangian Codes Group

Experimental Validation

- B. Balakumar, Neutron Science and Technology Group
- S. Pol, Neutron Science and Technology Group

Program Development Mentor

• K. Ott, Applied Energy Program Director

Business Development-Tech Transfer Consultant

• M. Erickson, Technology Transfer Division

Remaining IWT Presentations

WindBlade: Coupled Turbine/Atmosphere Modeling Rod Linn, Earth and Environmental Sciences Division, LANL

Blade FE and Coupled Plant Scale Aeroelastodynamic Modeling Gretchen Ellis, Applied Engineering & Technology Division, LANL DJ Luscher, Theoretical Division, LANL

Multiscale Sensing and Structural Health Monitoring

Kevin Farinholt, Applied Engineering & Technology Division, LANL

Experimental Wind Turbine Aerodynamics Research

BJ Balakumar, Physics Division, LANL

Modeling Development Activities

Curtt Ammerman, Applied Engineering & Technology Division, LANL

