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Why do we need a plant scale aeroelastodynamic model?
• Plant scale simulations are necessary to address turbine-turbine interactions
• Aerodynamic loads are critical to the structure and to the flow
• Aerodynamic loads depend upon relative wind velocity and blade orientation
• Blade deformation changes relative velocity and angle of attack
• Nonlinear dynamic response of wind blades can cause increased loads transmitted to gearbox

Currently, WindBlade addresses the first two items

Desire to add elastodynamic structural response within WindBlade in a coupled manner

Motivation for including elastic response within WindBlade



Model each wind turbine as deformable body within 
WindBlade

• Tower and blades  Geometrically exact beam theory
• Gearbox and hub as nonlinear constraints
• Permits dynamic pitch and yaw control
• Readily extendable to offshore applications

Other approaches:
• Direct spatial coupling between deforming solid/shell 
Lagrange mesh and ALE fluid grid

• Modal dynamic (linear!!) FE methods

Approach for including elastodynamics

Anticipation of increasingly large rotors (and attendant 
deformation) motivates “beyond modal” treatment



Conceptual overview of coupling strategy
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Basic approach:
• Geometrically exact beam theory (fully nonlinear kinematics)
• Loose two-way coupling to aero within WindBlade
• Hodges et al. asymptotically correct analysis of anisotropic, composite cross-sections



Nonlinear (geometrically exact) beam theory
Beam Kinematics:
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Sectional strains (axial, transverse shear)

Sectional curvature (torsional rate of twist, bending curvatures)
Sectional Forces (and Moments):
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Weak Form of Momentum Conservation:
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Inertial contribution to nodal forces:

Total residual  0
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Stress contribution to nodal forces:

Nodal force due to external loads:



Implementation
Two versions:
• Goal is to implement as Fortran subroutine library called from WindBlade
• In order to debug, evaluate, and test competing algorithms  python protype

Current Status (implemented):
• Fully nonlinear kinematics, conformal rotation vector, objective interpolation
• Petrov-Galerkin FE implementation (test function ≠ trial function)
• Newton-Raphson solver with Lagrange constraint enforcement
• Newmark two-parameter time integration
• Temporal and spatial interpolation of aerodynamic forces (permits dissimilar dt and dx)
• Gravity (body forces) 

To do:
• Aerodynamic torsion from offset aero/shear centers
• Hub/gearbox/tower constraints
• Generalized alpha time integration
• Extension for large initial twist/curvature



Simple example:
• Challenge theory and numerical implementation
• Aerodynamic forces from WindBlade
• Free-hub aerodynamic “spin-up” with gravity
• Highlight some important aspects of nonlinear dynamic response

• large deformation  pitch angle

Example: One way coupling for prismatic blade rotor
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Example: Results for aero induced spin up



Summary
Geometrically exact beam theory for blades/towers:
• Current implementation (python) can handle:

• Anisotropic materials
• Material and geometric coupling: e.g. bend-twist, axial-twist
• Offset aero, mass, and shear centers
• Initial curvature and twist

• Extendable to include (significant future work):
• Elastic cross-section warping effects
• Damage

Gearbox and hub modeled by nonlinear constraint equations:
• Enables dynamic pitch and yaw control
• Can include transmission compliance, generator power, and mechanical loss
Turbine nonlinear elastodynamic response:
• Computational costs are larger than modal based approaches, but not excessive
• Easily amenable to offshore wind turbine modeling
• Approach could be used in conjunction with other aerodynamic loading models
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