Modeling the Structural Dynamic Response of Wind Turbines

March 2nd, 2011

Mid-Project Review Intelligent Wind Turbine Laboratory Directed R&D Los Alamos National Laboratory

Gretchen Ellis*/D.J. Luscher#

*Gretchen Ellis Applied Engineering and Technology Division Mechanical and Thermal Engineering (AET-1) MS H821, P.O. Box 1663, Los Alamos, NM, 87545 505-665-6787, <u>gellis@lanl.gov</u>

 *D.J. Luscher Theoretical Division
Fluid Dynamics and Solid Mechanics (T-3)
MS B216, P.O. Box 1663, Los Alamos, NM 87545 505 663-5804, <u>djl@lanl.gov</u>

UNCLASSIFIED

Modeling the Structural Dynamic Response of Wind Turbines

Part 2: Plant-scale aeroelastically-coupled wind turbine response from geometrically exact beam theory

UNCLASSIFIED

Detailed Finite Element Modeling of the CX-100 Blade

Background CX-100 blade Purpose of FE modeling effort Structural FE Analysis Tools • Work completed to date Future work

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LA-UR-11-01376

CX-100 Blade – Why are we using it? What is its history?

- Sandia National Laboratories (SNL) initiated a blade research program in 2002 to investigate the use of carbon in subscale 9 m blade ^{D. Berry et al., SNL}:
 - CX-100 (<u>Carbon Experimental 100</u> (kW turbine)) wind turbine blade
 - Collaboration of SNL, TPI Composites, Inc., Global Energy Concepts, LLC (GEC), and MDZ Consulting (MDZ)
- CX-100 blade is a 9 m blade, designed for a 20-year life per International Electrotechnical Commission (IEC) Class II loads with turbulence level "B" ^{D. Berry et al., SNL}
- This blade has been structurally well-characterized by SNL and NREL through modal, static, and fatigue testing ^{J. Paquette, Todd Griffith, Brian Resor, Daniel Laird, et al. SNL; J. van Dam, S. Hughes, et al., NREL}
- We have chosen to use the CX-100 blade because it is affordable and of suitable size that its scale and materials are relevant to present day wind turbine industry practice

UNCLASSIFIED

Detailed Finite Element Modeling of the CX-100 Blade

- Background CX-100 blade
- Purpose of FE modeling effort
- Structural FE Analysis Tools
- Work completed to date
- Future work

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LA-UR-11-01376

Purpose of Detailed Structural Finite Element Model

Detailed Finite Element Modeling of the CX-100 Blade

- Background CX-100 blade
- Purpose of FE modeling effort
- Structural FE Analysis Tools
- Work completed to date
- Future work

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LA-UR-11-01376

Software Tools for Structural Finite Element Analysis

CX-100 Blade Model Using ACP, 2/16/2011

Show Progress Abow 55 Messag

 Support of parametric variations: geometry dimensions, material properties, boundary conditions, derived results

Software Tools for Structural Finite Element Analysis

CX-100 Blade Structural Finite Element Modeling Effort

- Background CX-100 blade
- Purpose of FE modeling effort
- Structural FE Analysis Tools
- Work completed to date
- Future work

TPI Composites, Inc. - May, 2010

TPI Composites, Inc. - May, 2010

TPI Composites, Inc. - May, 2010

Looking down LP half of CX-100 blade

ANSYS finite element model of LP blade half

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LA-UR-11-01376

ANSYS Structural FE Model

ANSYS Structural FE Model

ANSYS Structural FE Model – ACP Composite Prep Post

Organization of the composite material lay-up is handled in ACP

	A	В	C	D
1				
2	3. Regi	on Root Trailing	Edge - High Pressure (RRTE - HP)	
з				
4		Layer#	ltem	Thickness (inches)
5		1	Gelcoat, Sport White, 953-WA411	0.0175
6		2	At-Prime Adhesion	0.005
7		3	3/4 oz Mat	0.007
8		4	Glass, Biaxial, DBM-1708	0.023
9		5	Glass, Biaxial, DBM-1208	0.018
10		7	C520 (Glass, Unidirectional, ELT 5500-7, 52 oz)	0.048
11		8	C520 (Glass, Unidirectional, ELT 5500-7, 52 oz)	0.048
12		9	C520 (Glass, Unidirectional, ELT 5500-7, 52 oz)	0.048
13		10	Glass, Biaxial, DBM-1208	0.018
14		11	C260 (Glass, Unidirectional, ELT 2900-7, 26 oz)	0.024
15		12	C260 (Glass, Unidirectional, ELT 2900-7, 26 oz)	0.024
16		13	C260 (Glass Unidirectional FLT 2900-7 26.oz)	0.024

Ð							
$\overline{\mathbb{Q}}$		A	В	с	D		
2	1	Ϋ́					
≭	2	2. Reg	ion Root Middle -	High Pressure (RRM - HP)			
\mathcal{T}	з						
A	4		Layer#	ltem	Thickness (inches)	TI	
Ħ	5		1	Gelcoat, Sport White, 953-WA411	0.0175		
∋	6		2	At-Prime Adhesion	0.005		
9	7		3	3/4 oz Mat	0.007		
R	8		4	Glass, Biaxial, DBM-1708	0.023		
5	9		5	Glass, Biaxial, DBM-1208	0.018		
2	10		7	C520 (Glass, Unidirectional, ELT 5500-7, 52 oz)	0.048		
ž	11		8	C520 (Glass, Unidirectional, ELT 5500-7, 52 oz)	0.048		
2	12		9	C520 (Glass, Unidirectional, ELT 5500-7, 52 oz)	0.048		
2	13		10	Glass, Biaxial, DBM-1208	0.018		
4	14		11	C260 (Glass, Unidirectional, ELT 2900-7, 26 oz)	0.024		
\approx	15		12	C260 (Glass, Unidirectional, ELT 2900-7, 26 oz)	0.024		
≿	16		13	C260 (Glass, Unidirectional, ELT 2900-7, 26 oz)	0.024		
\geq	17		14	C260 (Glass, Unidirectional, ELT 2900-7, 26 oz)	0.024		
×	18		15	C260 (Glass, Unidirectional, ELT 2900-7, 26 oz)	0.024		
\sim	4.0		10		0.004		

Los Alamos
NATIONAL LABORATORY

UNCLASSIFIED

ANSYS Structural FE Model

Have working blade model reflecting:

- proper geometry and all relevant blade features
- accurate section thicknesses
- "smeared" material properties

Have detailed lay-up schedule descriptions with nominal layer thicknesses and material properties for discrete layers

CX-100 Blade Structural Finite Element Modeling Effort

- Background CX-100 blade
- Purpose of FE modeling effort
- Structural FE Analysis Tools
- Work completed to date
- Future work

Much work remains...

- Verification and Validation of CX-100 Finite Element Model
- Use finite element model to provide data for the development of a nonlinear elastodynamic beam finite element model to be used in WindBlade
- Provide feedback for SHM activities
 - Sensor placement and critical crack size
 - Fatigue and field testing data interpretation

UNCLASSIFIED

Verification and Validation (V&V) Activities

Verification and Validation is integral to a Predictive Analysis Capability

- Uncertainty quantification/sensitivity analysis
- Computational expense/resource allocation
 - mesh density
 - discrete modeling of composite layers (as opposed to "averaged properties" approximation)
 - linear dynamic response vs. nonlinear inertial response calculations

• Comparison to published results, field test data, lab test data, etc.

UNCLASSIFIED

Summary

- We have finite element model of CX-100 blade developed with a high level of <u>fidelity</u> and <u>parametric</u> capability to support the multiple efforts of our project, including:
 - Aero-elasto-dynamic modeling
 - Sensor placement, flaw detection, sub-blade scale modeling
 - Formal V&V process to reflect meaningful predictive analysis capability
- We've used the Ansys Workbench simulation platform as the framework for our modeling effort to explore its state-of-the-art "workflow technology" capabilities
- We have started using a formal V&V process to address model validity, uncertainty quantification, sensitivity analysis, computational expense, resource allocation

UNCLASSIFIED

References

1.) **"Finite Element Modeling of Wind Turbine Blades",** Daniel L. Laird and Felicia C. Montoya, David J. Malcolm, 43rd AIAA Aerospace and Sciences Meeting and Exhibit, 10-13 January, 2005, Reno, Nevada

2.) **"Design of 9-Meter Carbon-Fiberglass Prototype Blades: CX-100 and TX-100",** Derek Berry, Principal Investigator, TPI Composites, Inc., 373 Market Street, Warren, RI 02885. SANDIA REPORT, SAND2007-0201, Unlimited Release, Printed September 2007

3.) "Composite Materials for Innovative Wind Turbine Blades", Thomas D. Ashwill and Joshua A. Paquette, Wind Energy Technology Department, Sandia National Laboratories, Albuquerque, NM, 87185

4.) **"Effects of Glass Fabric and Laminate Construction on the Fatigue of Resin Infused Blade Materials",** Daniel D. Samborsky, Pancasatya Agastra and John F. Mandell. Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, USA

5.) **"Boundary Condition Considerations for Validation of Wind Turbine Blade Structural Models",** D. Todd Griffith, Patrick S. Hunter, David W. Kelton, Thomas G. Carne, Joshua A. Paquette. Sandia National Laboratories, Albuquerque, NM, 87185-0557. SEM Annual Conference and Exposition on Experimental and Applied Mechanics, June 1-4, 2009, Albuquerque, NM, USA.

6.) " Structural Dynamics Response and Model Validation of Wind Turbine Structures", D. Todd Griffith, Sandia National Laboratories, Albuquerque, NM, 87185. Submitted for a Special Session on "Wind Energy Technology" at the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference in Palm Springs, CA, May 4-7, 2009.

7.) **" Structural Testing of 9 m Carbon Fiber Research Blades",** J. Paquette, Sandia National Laboratories, J. van Dam and S. Hughes, National Renewable Energy Laboratory. To be presented at the AIAA 2007 Wind Energy Symposium, Reno, Nevada, January 8-11, 2007. Conference Paper, NREL/CP-500-40985, January 2007.

8.) **"Materials and Innovations for Large Blade Structures: Research Opportunities in Wind Energy Technology",** Thomas Ashwill, Sandia National Laboratories, Albuquerque, NM, 87185. 50th AIAA Structures, Structural Dynamics, and Materials Conference, Palm Springs, May, 2009. AIAA-2009-2407.

UNCLASSIFIED

