
(2007) 209–218
www.elsevier.com/locate/enggeo
Engineering Geology 91
Regression models for estimating coseismic landslide displacement

Randall W. Jibson ⁎

US Geological Survey, Box 25046, MS 966, Denver Federal Center, Denver, CO 80225 USA

Received 23 October 2006; received in revised form 16 January 2007; accepted 25 January 2007
Available online 9 February 2007
Abstract

Newmark's sliding-block model is widely used to estimate coseismic slope performance. Early efforts to develop simple
regression models to estimate Newmark displacement were based on analysis of the small number of strong-motion records then
available. The current availability of a much larger set of strong-motion records dictates that these regression equations be updated.
Regression equations were generated using data derived from a collection of 2270 strong-motion records from 30 worldwide
earthquakes. The regression equations predict Newmark displacement in terms of (1) critical acceleration ratio, (2) critical
acceleration ratio and earthquake magnitude, (3) Arias intensity and critical acceleration, and (4) Arias intensity and critical
acceleration ratio. These equations are well constrained and fit the data well (71%bR2b88%), but they have standard deviations of
about 0.5 log units, such that the range defined by the mean±one standard deviation spans about an order of magnitude. These
regression models, therefore, are not recommended for use in site-specific design, but rather for regional-scale seismic landslide
hazard mapping or for rapid preliminary screening of sites.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Most moderate and large earthquakes trigger land-
slides, and in many cases these landslides account for a
significant proportion of total earthquake damage. To
address this hazard, methods for modeling and predict-
ing landslide displacements during earthquakes have
been evolving steadily since Newmark (1965) first intro-
duced a simple model, still in common use, to estimate
coseismic slope displacement. Newmark's (1965) meth-
od models a landslide as a rigid friction block that slides
on an inclined plane when subjected to base accel-
erations approximating an earthquake. Landslide dis-
placement is estimated by integrating twice with respect
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to time over the parts of an earthquake acceleration-time
history that exceed the threshold acceleration required to
overcome basal resistance and initiate sliding (Fig. 1).
Computer programs to conduct rigorous Newmark anal-
yses are readily available (Houston et al., 1987; Jibson
and Jibson, 2003) and can be used to estimate seis-
mically induced slope displacements at specific sites
where the relevant data can be collected and appropriate
strong-motion records can be selected to approximate
the shaking the site will experience (e.g., Wilson and
Keefer, 1983; Jibson, 1993; Jibson and Keefer, 1993;
Pradel et al., 2005).

Wieczorek et al. (1985) were the first to use Newmark
analysis as a basis for seismic landslide microzonation,
and methods for such applications have evolved steadily
since that first study (e.g., California Division of Mines
and Geology, 1997; Jibson et al., 1998; Mankelow and
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Fig. 1. Illustration of Newmark double-integration. A, Earthquake
acceleration-time history with critical acceleration (short-dashed line)
of 0.20 g superimposed. B, Velocity of landslide block versus time. C,
Displacement of landslide block versus time. Points X, Y, and Z are for
reference between plots.
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Murphy, 1998; Luzi and Pergalani, 1999; Miles and Ho,
1999; Jibson et al., 2000; Miles and Keefer, 2000, 2001;
Del Gaudio et al., 2003; Rathje and Saygili, 2006). Such
applications generally involve GIS modeling in which
study areas are gridded, and discrete estimates of coseis-
mic displacement are generated for each grid cell. Con-
ducting a rigorous Newmark analysis for each grid cell
would require selection of unique strong-motion records
for each cell, which is impractical. As an alternative,
simple regression models that estimate Newmar displace-
ment as a function of various geotechnical and seismo-
logical parameters facilitate GIS-based seismic landslide
microzonation. Simple regression models can also be
used for rapid, preliminary estimation of dynamic slope
performance.

This paper briefly reviews previously published meth-
ods for estimating Newmark displacement, describes a
much larger set of strong-motion data to be analyzed in
generating new regression models, and then proposes
regression models to estimate Newmark displacement as
a function of (1) critical acceleration ratio, (2) critical
acceleration ratio and magnitude, (3) Arias intensity and
critical acceleration, and (4) Arias intensity and critical
acceleration ratio.
2. Previous simplified approaches

Conducting a Newmark analysis requires character-
ization of two key elements: the dynamic stability of the
slope to be analyzed and the earthquake shaking to
which it will be subjected. Dynamic slope stability is
quantified as the critical (or yield) acceleration (ac), the
threshold ground acceleration necessary to overcome
basal sliding resistance and initiate permanent down-
slope movement. In its simplest form, critical acceler-
ation can be estimated as

ac ¼ ðFS−1Þgsina; ð1Þ
where ac is in terms of g, the acceleration of gravity, FS
is the static factor of safety (the ratio of resisting to
driving forces or moments in a slope), and α is the angle
from the horizontal of the sliding surface (Newmark,
1965; Jibson, 1993).

Characterization of the seismic groundmotion presents
more challenges. At the time Newmark's method was
published, few strong-motion records were available for
analysis, and computing resources to conduct rigorous
integrations were sparse; therefore, simple, generalized
methods for estimating Newmark displacements (DN)
were developed. Newmark (1965) analyzed simple rec-
tangular acceleration pulses as well as four actual strong-
motion records to produce some graphical generalizations
that could be used to estimate displacement as a function
of the ratio of the critical acceleration to the peak ground
acceleration (amax); this ratio is commonly referred to as
the critical acceleration ratio. Similar approaches were
used subsequently to refine these estimates by using a
variety of simple shapes for acceleration pulses (e.g.,
triangular, sinusoidal) as well as larger collections of
actual strong-motion records (Sarma, 1975; Franklin and
Chang, 1977; Hynes-Griffin and Franklin, 1984; Yegian
et al., 1991). All of these early simplified generalizations
graphically plotted Newmark displacement versus critical
acceleration ratio, and some proposed simple equations to
define upper bounds of Newmark displacements.

Ambraseys and Menu (1988) proposed various
regression equations to estimate Newmark displacement
as a function of the critical acceleration ratio based on
analysis of 50 strong-motion records from 11 earthquakes.
They concluded that the following equation best charac-
terized the results of their study:

logDN ¼ 0:90

þ log 1−
ac
amax

� �2:53 ac
amax

� �−1:09
" #

F0:30;

ð2Þ
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whereDN is in centimeters and the last term is the standard
deviation of the model. Other studies have proposed
regression equations of different forms, and including
various additional parameters, to estimate Newmark dis-
placement (e.g., Yegian et al., 1991).

Jibson (1993) suggested using Arias intensity (Ia)
rather than peak ground acceleration to characterize the
strong shaking. Arias (1970) defined this measure of the
shaking content of a strong-motion record as

Ia ¼ p
2g

Z d

0
½aðtÞ�2dt; ð3Þ

where g is the acceleration of gravity, d is the duration
of the strong shaking, a is the ground acceleration, and t
is time. Because Arias intensity measures the total accel-
eration content of the record rather than just the peak
value, it provides a more complete characterization of
the shaking content of a strong-motion record than does
the peak ground acceleration. Jibson (1993) proposed
the following regression equation based on rigorous
analysis of 11 strong-motion records for ac values of
0.02, 0.05, 0.10, 0.20, 0.30, and 0.40 g:

logDN ¼ 1:460logIa−6:642ac þ 1:546F0:409 ð4Þ
where DN is in centimeters, Ia is in meters per second,
ac is in terms of g, and the last term is the standard
deviation of the model. This model fit the small input
data set well (R2 =87%), but making ac a linear term
made the model overly sensitive to small changes in ac.
Jibson et al. (1998, 2000) modified the form of this
equation to make all terms logarithmic and then per-
formed rigorous analysis on 555 strong-motion records
from 13 earthquakes for the same ac values as indicated
for Eq. (4) to generate the following regression equation:

logDN ¼ 1:521 logIa−1:1993 log ac−1:546F0:375:

ð5Þ
This equation has been used in various contexts to

assess and map regional seismic landslide hazards (e.g.,
Mankelow and Murphy, 1998; Miles and Keefer, 2000,
2001; Del Gaudio et al., 2003; Murphy and Mankelow,
2004; Haneberg, 2006). The data set from which this
equation was generated, however, was heavily weighted
toward the lower ac values because of how the data set
was constructed. The 555 strong-motion records
analyzed had peak accelerations ranging from 0.03 to
1.78 g, but many more records had lower peak
accelerations than had higher accelerations. Newmark
displacements were calculated only for ac values that
were less than the peak acceleration, therefore, the data
set included many more values for the lower ac values
than for the higher ac values. This resulted in a model
that is well constrained at lower values of ac but is
progressively less well fit for higher ac values.

Other groups of studies have refined and expanded
Newmark's model to account for the deformability of
the system as well as the dynamic displacement. These
approaches generally fall under two categories: (1)
decoupled models (Makdisi and Seed, 1978; Lin and
Whitman, 1983) and (2) fully coupled models (Bray and
Rathje, 1998; Rathje and Bray, 1999, 2000). The present
study does not deal with these more complex models but
is limited to traditional rigid-block Newmark models.

3. Methods and data

To produce well-constrained regression models for
predicting Newmark displacement, a data set of New-
mark displacements was constructed for ac values of
0.05, 0.10, 0.20, 0.30, and 0.40 g, the range of practical
interest for seismic slope-stability problems. Table 1
shows 30 earthquakes from which a set of 2270 single-
horizontal-component strong-motion records were
obtained. These records include those described by
Jibson and Jibson (2003) in addition to 129 new records
from the 2004 Niigata-Ken-Chuetsu, Japan, earthquake.
All of the records used are from either free-field stations
or single-story structures. A mixture of site conditions is
represented: 10% of the sites are on hard rock, 27% on
soft rock, 49% on stiff soil, and 14% on soft soil.

To model displacement as a function of critical
acceleration ratio, a rigorousNewmark double-integration
was performed for each of the 2270 strong-motion records
for all critical accelerations that were less that the peak
acceleration of the record. This yielded a data set contain-
ing 6632 Newmark displacements along with corres-
ponding critical accelerations, peak accelerations (amax),
and earthquake magnitudes (moment magnitude, M).

Modeling displacement as a function of critical ac-
celeration and Arias intensity required sampling the
entire data set to produce a smaller data set that was
evenly distributed across the range of critical accelera-
tions to be analyzed (0.05–0.40 g). Of the 2270 strong-
motion records, 184 had peak accelerations greater than
0.4 g, the upper-bound critical acceleration. Therefore, I
selected 175 records for each of the five ac values to be
analyzed; the records were evenly distributed across the
range bounded by the critical acceleration of the data
subset to the highest peak acceleration in the record
collection. Thus, the final data set included 875 rigor-
ously determined Newmark displacements, 175 for each
of the five ac values analyzed. Also included in the data



Table 1
Earthquakes and number of strong-motion records used for Newmark
analysis

Earthquake Date Magnitude (M) Number of
records

Cape Mendocino, CA 04/25/1992 7.1 12
Chi-Chi, Taiwan 09/21/1999 7.6 629
Coalinga, CA 05/05/1983 6.4 92
Coyote Lake, CA 08/06/1979 5.7 22
Daly City, CA 03/22/1957 5.3 2
Duzce, Turkey 11/12/1999 7.1 20
Friuli, Italy 05/06/1976 6.5 10
Hilo, HI 11/29/1975 7.2 1
Imperial Valley, CA 05/18/1940 6.0 2
Imperial Valley, CA 10/15/1979 6.5 67
Kern County, CA 07/21/1952 7.5 10
Kobe, Japan 01/17/1995 6.9 24
Kocaeli, Turkey 08/17/1999 7.4 41
Landers, CA 06/28/1992 7.3 78
Loma Prieta, CA 10/17/1989 6.9 136
Mammoth Lakes, CA 05/25/1980 6.3 6
Mammoth Lakes, CA 05/27/1980 6.0 8
Morgan Hill, CA 04/24/1984 6.2 49
Nahanni, Canada 12/23/1985 6.8 6
Niigata-Ken-
Chuetsu, Japan

10/23/2004 6.6 129

Nisqually, WA 02/28/2001 6.8 158
North Palm Springs, CA 07/08/1986 6.0 63
Northridge, CA 01/17/1994 6.7 376
Parkfield, CA 06/28/1966 6.0 9
San Fernando, CA 02/09/1971 6.6 42
Santa Barbara, CA 08/13/1978 6.0 8
Superstition Hills, CA 11/23/1987 6.5 32
Tabas, Iran 09/16/1978 7.4 14
Westmoreland, CA 04/26/1981 5.8 12
Whittier Narrows, CA 10/01/1987 6.0 212
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set were the peak accelerations, critical accelerations,
and Arias intensities of the records analyzed. There was
some overlap in the records selected in the different ac
groupings.

4. Regression equations for predicting Newmark
displacement

This section presents a variety of regression equa-
tions of different forms that can be used to estimate New-
mark displacement.

4.1. Newmark displacement as a function of critical
acceleration ratio

As has been discussed previously, the commonest
approach to a simplified estimation of Newmark dis-
placements has been to correlate displacement with the
critical acceleration ratio (ac/amax). Functional forms
having the greatest utility are those that mimic the
theoretical values at the extrema of the range of critical
acceleration ratio: functions should predict displace-
ments approaching infinity when ac/amax=0 and ap-
proaching zero when ac/amax=1. Fig. 2 shows the
present data set plotted in terms of Newmark displace-
ment and critical acceleration ratio. Between ac values
of about 0.2 and 0.8 g the data would be well fit by a
straight line in semi-log space. At the two ends of the
range, however, the data clearly tail upward at low ac
values and downward at high ac values, as would be
expected. Ambraseys and Menu (1988) explained a
rational basis for the functional form they proposed [Eq.
(2)], and their functional form matches the characteristic
shape apparent in the data; therefore, a regression line
using this functional form was fit to the present data set:

logDN ¼ 0:215

þ log 1−
ac
amax

� �2:341 ac
amax

� �−1:438
" #

F0:510;

ð6Þ
where DN is in centimeters, and the last term is the
standard deviation of the model. The equation has an R2

value of 84% and is thus well fit to the data at a very high
level of statistical significance. The exponents in Eq. (6)
are similar in value to those in Eq. (2), which gives the
curves a similar shape; the constant term is lower in value,
which shifts the curve downward. Fig. 2 compares Eqs.
(2) and (6) to the data set. Eq. (2), derived from a set of 50
strong-motion records, lies well above Eq. (6) and thus
overestimates displacement across the entire ac range.

I experimented with several hundred alternative func-
tional forms, and, except for some high-order polynomials,
none had better fits or behaved correctly at the extrema.
Some polynomial models did yield marginally better fits
(increase in R2 value of only 0.3%), but they did not yield
satisfactory estimates at the extrema: (1) when the critical
acceleration ratio approaches zero, the predicted displace-
ment is limited by the value of the regression constant
rather than approaching infinity, and (2) when the critical
acceleration ratio approaches one, a polynomial model
predicts a finite displacement rather than approaching zero.
4.2. Newmark displacement as a function of critical
acceleration ratio and moment magnitude

Ambraseys andMenu (1988) stated that Eq. (2) is valid
only for the fairly narrow magnitude (Ms) range of 6.6–
7.2. Duration tends to increase with increasing magni-
tude, and duration has a significant effect on Newmark
displacement; therefore, I separated the data into three



Fig. 2. Newmark displacements plotted logarithmically as a function of critical acceleration ratio. Results of various other studies are shown for
comparison; green lines are centroids of areas delineated by Makdisi and Seed (1978) for the magnitudes indicated.
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magnitude ranges (Mb6.0, 6.0≤Mb7.0, andM≥7.0) to
test for magnitude dependence. Although the data for
these ranges broadly overlap, best-fit curves through each
subset of the data show the magnitude-dependence of
Newmark displacement (Fig. 3). Therefore, I developed a
separate model that takes magnitude into account. This
produces an equation that should be applicable across the
magnitude range of the data set, 5.3≤M≤7.6:

logDN ¼ −2:710

þ log 1−
ac
amax

� �2:335 ac
amax

� �−1:478
" #

þ 0:424MF0:454; ð7Þ
whereM is moment magnitude. The exponents are nearly
identical to those in Eq. (6), which gives the curves similar
characteristic shapes; themagnitude term simply shifts the
curve up or down. Eq. (7) has an R2 value of 87%, a small
but significant increase over the value for Eq. (6).

4.3. Newmark displacement as a function of Arias
intensity and critical acceleration

As stated previously, Arias (1970) intensity is, in
many ways, superior to peak acceleration in character-
izing the shaking content of an earthquake record
because it accounts for all acceleration peaks (not just
the maximum) and, implicitly, for duration. Jibson et al.
(1998, 2000), expanding on the initial work of Jibson
(1993), showed the utility of using the following
functional form for correlating Newmark displacement
with Arias intensity and critical acceleration:

logDN ¼ AlogIa þ Blogac þ CFr; ð8Þ

where A, B, and C are the constants to be determined by
the regression andσ is the standard deviation of themodel.
UsingEq. (8), I regressed the 875Newmark displacements
extracted from the present data set and generated the
following regression equation, which has an R2 value of
71%:

logDN ¼ 2:401logIa−3:481logac−3:230F0:656; ð9Þ

whereDN is in centimeters, Ia is in meters per second, and
ac is in terms of g.

Fig. 4 graphically compares this regression model
with the previous model by Jibson et al. (1998, 2000)
and with best-fit lines through each of the five ac
subsets of the database. Eq. (9) more closely fits the
best-fit lines through the data subsets than does the
previous model; the improvement is most pronounced



Fig. 3. Newmark displacements plotted logarithmically as a function of critical acceleration ratio for different earthquake magnitudes. Data are
separated into three magnitude groups, and best-fit lines for each group are shown: Mb6.0, 6.0≤Mb7.0, and M≥7.0.
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for moderate and large values of ac. In all cases, the
best-fit lines of the new model more closely parallel
with the best-fit lines through the data subsets, which
results in more consistent predictions across a broad
range of possible input values.
Fig. 4. Best-fit lines showing Newmark displacement as a function of Arias i
based on the five ac values used to construct the data set. Gray lines are best
from the present study [Eq. (9)]; dashed black lines are best-fit lines from Jib
critical accelerations indicated.
4.4. Newmark displacement as a function of Arias
intensity and critical acceleration ratio

To further constrain the variability in ground motion,
peak acceleration can also be included in this type of
ntensity in log–log space. The data set was separated into five subsets
-fit lines through each ac data subset; solid black lines are best-fit lines
son et al. (1998, 2000) [Eq. (5)]. Ellipses enclose lines pertaining to the
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model [Eq. (9)]. As previously described, peak accel-
eration is most commonly included as a ratio with cri-
tical acceleration. This yields the following equation, in
which the R2 value improves to 75%, and the standard
deviation decreases slightly:

logDN¼0:561logIa−3:833logðac=amaxÞ−1:474F0:616:

ð10Þ

A shortcoming of thismodel is that evenwhenac equals
or exceeds amax a small, but finite, displacement will be
predicted. This is true for any model that uses a parameter
such as Arias intensity, which characterizes ground motion
in different terms than the dynamic stability of the slope.

5. Discussion

It is important to remember exactly what these new
equations are: they are models of models. Newmark's
(1965) sliding-block model has proved very useful in
modeling dynamic slope performance, but it is highly
simplistic and contains many assumptions that might or
might not approximate reality in various situations.
Newmark's method treats a landslide as a rigid-plastic
body: the mass does not deform internally (neither from
shaking nor basal shear), it experiences no permanent
displacement at accelerations below the critical or yield
level, and it deforms plastically along a discrete basal
shear surface when the critical acceleration is exceeded.
Thus, Newmark's method is most appropriately applied
to landslides in fairly stiff material that move as a co-
herent mass along a well-defined slip surface. Because
actual landslides do not always behave in this idealized
manner, rigorously calculated Newmark displacements
have always been considered indices of dynamic slope
performance rather than precise predictions of actual
slope displacement (Jibson et al., 1998, 2000; Rathje
and Bray, 2000). The newly developed regression equa-
tions are models to predict what displacement a rigorous
Newmark analysis would yield; thus, they are approx-
imations of what is already a fairly simplistic model.

Newmark's (1965) approach and subsequent varia-
tions and applications of it were developed to analyze
the seismic behavior of earth dams and embankments
(e.g., Franklin and Chang, 1977; Makdisi and Seed,
1978; Seed, 1979; Lin and Whitman, 1983). These large
earth structures commonly have well-defined, homoge-
neous properties; are constructed largely of relatively
ductile fine-grained materials; and are principally
subject to deep modes of failure. To better model such
engineered earth structures, so-called fully coupled anal-
yses recently have been developed that overcome New-
mark's original assumption of internal rigidity by taking
into account the dynamic deformation of the soil mass
and the effects of coseismic displacement on the res-
ponse of the slide mass (Bray and Rathje, 1998; Rathje
and Bray, 1999, 2000). These and other studies (e.g.,
Kramer and Smith, 1997; Wartman et al., 2003, 2005;
Lin and Wang, 2006) make clear that traditional New-
mark analysis–the rigid-block analysis dealt with in this
paper–does not yield acceptable results for the seismic
performance of large engineered earth structures in many
cases and, therefore, should not be used for such situa-
tions. Wartman et al. (2003, 2005) and Rathje and Bray
(1999, 2000) provide detailed treatments of specific
combinations of site and shaking conditions that are and
are not adequately modeled by rigid-block analysis.

Rigid-block analysis as modeled herein is best suited to
a very different type of slope failure: earthquake-triggered
landslides in natural slopes (first proposed by Wilson and
Keefer, 1983).Keefer's (1984, 2002) analysis of data from
worldwide earthquakes indicated that the largemajority of
earthquake-triggered landslides are shallow, disrupted
failures in brittle materials, most commonly rock falls and
rock slides. Documentations of landslides from several
earthquakes have indicated that such landslides common-
lymake up 90%ormore of triggered landslides (e.g., Harp
et al., 1981; Harp and Jibson, 1995, 1996; Keefer and
Manson, 1998; Jibson et al., 2004, 2006). These types of
landslides are well-suited to rigid-block analysis because
the brittle surficial material behaves rigidly and the re-
latively thin landslidemasses do not experience significant
site response that would modify the incident ground mo-
tions. Therefore, the proposed models in this paper are
most appropriately applied to thinner landslides in more
brittle materials rather than to deeper landslides in softer
materials. This includes the vast majority of seismically
triggered landslides in natural slopes, which makes the
proposed models particularly applicable to regional
analysis of seismic landslide hazards.

Many thousands of strong-motion records are cur-
rently available from a variety of web sites, and data sets
many times larger than the one used in this paper could
be constructed. I tested samples of the data set described
in this paper to determine the sensitivity of the regres-
sion models to the size of the data set. Models generated
using data from several hundred strong-motion records
were virtually identical to those generated using the
entire data set (2270 records). This suggests that the data
set used to generate the regression models in this paper
is sufficiently large to encompass the range of variation
that would be present in any sample of comparable size
taken from all of the currently available strong-motion
records.
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Site conditions can significantly affect some strong-
motion characteristics, but the shaking parameters used
in the regression models should not be overly sensitive
to different site conditions. Peak ground acceleration is
used only as a ratio of the critical acceleration, and Arias
intensity is used simply to express the total energy con-
tent of the earthquake at the site, regardless of the spe-
cific frequency or amplitude content of the shaking. To
determine if site conditions significantly affect the
regression models, the data used in the models were
separated into soil and rock categories, and separate
regression models were generated to quantify the
differences. Values of the regression coefficients and
constants for the soil and rock models differed by only
5–7%, an insignificant difference as compared to other
uncertainties in the models. Therefore, separate models
for different site conditions are deemed unnecessary.

Fig. 2 compares the results from the present study
[Eq. (6)] to those from some previous studies. The curve
from Ambraseys and Menu (1988) has the same func-
tional form as that defined by Eq. (6), but their curve lies
well above the curve from the present study. This dif-
ference is most likely attributable to the small (50) col-
lection of strong-motion records they analyzed. Franklin
and Chang (1977) analyzed a larger collection of records
(about 200), and their results, though spanning only part
of the range under present consideration, compare quite
well with the best-fit curve from Eq. (6). Makdisi and
Seed (1978) used a few records from only three earth-
quakes, and their curves lie well above those from the
other studies. This result is not surprising because they
used the so-called decoupled method, which accounts
for the dynamic deformation of the sliding block and
thus produces amplified accelerations in sliding blocks
that are fairly thick (representing deep landslides). In-
terestingly, however, the Makdisi and Seed curve for the
largest earthquakes defines the upper bound of the cur-
rent data set and thus can be considered a conservative
upper limit of the displacement that would be predicted
by a rigid-block analysis.

The newly developed models [Eqs. (6), (7), (9), and
(10)] yield mean values of displacement when the
standard deviation (the last term in the equations) is
ignored. All of these equations have standard deviations
of roughly±0.5 log units, corresponding to a range of
estimated Newmark displacements of an order of mag-
nitude. This broad range results largely from the stochas-
tic nature of seismic shaking and the difficulty in
characterizing that shaking using single numerical
measures such as peak acceleration or Arias intensity:
multiple strong-motion records having identical Arias
intensities or peak accelerations will yield different dis-
placements for a given critical acceleration. The calc-
ulated uncertainty in the equations is an indirect measure
of the stochastic properties of the input seismic ground
motions and should be accounted for when applying
these predictive equations to practical problems. For
example, specification of the standard deviations of the
models facilitates these models being incorporated into
probabilistic hazard models (Rathje and Saygili, 2006).
If a deterministic analysis is undertaken, it might be
considered conservative to use the mean plus one or
even two standard deviations, depending on the desired
level of design conservatism.

One could argue that a regression model that yields a
range of displacements spanning an order of magnitude
is of little practical use. These regression equations are
not intended for applications in site-specific projects
where accurate estimates of displacement are required
for design purposes; software to conduct rigorous anal-
yses in such conditions is readily available (Jibson and
Jibson, 2003). Rather, the intended use of these equa-
tions is for regional-scale assessment and mapping of
seismic landslide hazards in which the dynamic stabi-
lities of the grid cells in a map area are estimated and
compared. In such efforts, the relative hazard is the
principal concern, and a comparison of mean estimated
displacement values is entirely appropriate to quantify
relative hazard. Local and regional judgment can be
applied to such a hazard classification to insure that the
absolute hazard categories are realistic in terms of past
experience and regional conditions. The regression equa-
tions also could be used appropriately to screen individual
sites rapidly in order to estimate dynamic performance
and evaluate what additional, more detailed, studies will
be required.

6. Conclusion

Newmark (rigid-block) analysis is a valuable tool to
predict the performance of natural slopes during earth-
quake shaking. For relatively shallow, brittle failures,
which comprise the vast majority of landslides triggered
by earthquakes, rigid-block analysis provides a reason-
able estimate of coseismic landslide displacement and
thus overall slope performance. The regression equa-
tions presented in Eqs. (6), (7), (9), and (10) are well
constrained (71%bR2b88%) and predict Newmark
displacement in terms of (1) critical acceleration ratio,
(2) critical acceleration ratio and earthquake magnitude,
(3) Arias intensity and critical acceleration, and (4)
Arias intensity and critical acceleration ratio. The range
defined by the mean±one standard deviation in each of
these equations spans about an order of magnitude;
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therefore, these regression models are not recommended
for use in site-specific design, but rather for regional-
scale seismic landslide hazard mapping or for rapid
preliminary screening of sites.
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