Proton Power

Biomass to Hydrogen Power

Clean Energy Systems & Green Hydrogen

Proton Power, Inc. 12100 Channel Point Dr. Knoxville, TN 37922

Tel: (865) 389-4713 Fax: (865) 671-1605 info@protonpowerinc.com

Companies have touch lives

- Neutron absorbers- Electrical generation
 - $AI_2O_3-B_4C$ Burnable neutron absorbers
 - B₄C Control Rod Material
- Test Reactor Fuel-Radioisotopes for 10 Million people.
- Aircraft brakes for Boeing 767 and 777 plus military.
- Made first 2800C production furnaces for high strength, high modulus carbon fibers.
- Developed ceramic punch technology and equipment to make Coors the thinnest beer cans in world.

In 2006 started into renewable energy sector.

- Biomass to Hydrogen Gasification for green hydrogen and power generation
- Highest H₂ content (65%) of any syngas output
- Low capex costs, high ROI
- Operating 3rd generation prototype
- Multi \$B addressable markets & 4 submitted patents
- Roadmap demonstrations of fuels production

General Advantages of CHyP Engine

- Costs are competitive with hydrocarbon fuels.
- Eliminates the need for a hydrogen distribution system.
- Hydrogen storage systems are eliminated.
- The systems are scalable to suit the application.
- The cellulose fuel is renewable.
- The by-product of burning hydrogen is water.
- Much of fuel could be waste products.
- Process is carbon neutral.

Proton Power Advantage

- Proton Power *measured* hydrogen content is 65% by volume compared with a 15% industry average
- Energy density >50% higher than industry average

Cellulosic Biomass to Hydrogen Power (CHyP)

- Thermal gasification process for lignocellulosic feedstocks
- 65% H₂, 30%CO₂, <5% CO, ash, tars in output stream
- H₂, CO₂ main produced gases for H2 production, electricity generation, CHP
- More clean, efficient burn than direct combustion (+30%)

Cellulosic Feedstocks Demonstrated

- Ag/forest residues, paper waste, wood chips, sawdust, paper
- Energy crops switchgrass
- Process gasifies cellulose, hemicelluloses and lignins
- Excellent fuel LCA (>85% CO₂ reduction) with waste streams
- Carbon-negative with switchgrass and other energy crops

Electricity Economics

Electricity Cost by Fuel Type

- Favorable Scaling Distributed, Community, Industrial and Utility
- Waste disposal and power generation for excellent customer ROI

Energy Payback Ratios

Energy Source

130/12/2010

H₂ Production Economics

- Plant Capital Costs (mid-scale)
 - \$15 Million : 1 tonne/hr CHyP hydrogen plant
 - \$25 Million : Commercial hydrogen-natural gas reform plant

H2 Feedstock Cost

- CHyP: \$0.40 0.80/kg depending on cellulose source
- NG reform plant: \$1-2/kg depending on gas price

H2 Merchant Market Price

- Wholesale rail: \$5-10/kg depending on NG price, delivery location
- Wholesale truck: \$5-\$20/kg depending on NG price, delivery location
- Retail truck: \$20-\$50/kg depending on quantity, delivery location

Production plant savings using CHyP generator

- \$24,000/day @ \$1/kg H2, payback in 2 years
- End-user savings using CHyP generator
 - \$120,000/day @ \$5/kg H2, payback in 5 months

Business Channels

Team

- Dr. Sam C. Weaver Chairman, CEO and Co-founder
 - Serial entrepreneur, CEO of 9 companies over 35 years. 40+ years in advanced materials and energy
 - Exits: Millennium Materials to Dyson Group Nuclear Ceramics to Eagle-Picher
 - Ph.D., M.S., B.S. Metallurgical Engineering
- Dan Hensley–COO
 - Business partner with Dr. Weaver for 35 years
 - Served as President, V.P. or COO of many of Dr. Weaver's companies
- Samuel P. Weaver–VP, Co-founder
 - CEO, Cool Energy. Engineering Lead: Network Photonics, InPhase Technologies. Board Secretary: Colorado Clean Energy Development Authority. B.S., Engineering & Applied Science, Caltech
- **Greg Shillings**–BS, Electrical Engineering, Tennessee Tech
- Terrence Johnson–Senior year Mech. Engineering, UT
- Nick Shaffer-Senior year Mech. Engineering, UT
- Dr. Jeff Hodgson- Mechanical Engineering, UT
- Dr. Mike Maskarinec- Chemistry, Indiana University
- Dr. Ramez Elgammon-Chemical Physics, Caltech

Advisors

Glenn Booth – Marketing Advisor from Cool Energy. Previously VP of Marketing: Rajant Corp. BSEE, CU **Leslie Weise** – Legal & Policy Affairs Advisor from Cool Energy. J.D., Masters Env. & IP Law, B.S. Engineering **Lee Smith**, BS, Mechanical Engineering, RPI

Brian Nuel, MS, Mechanical Engineering, U. III.

Kevin McWilliams, MS, Aerospace Engineering, CU

Nathanial Farber, BS, Mechanical Engineering, CU

Dan Harrison, BS, Eng. and Applied Science, Caltech Rod Pullman, Mathematics/Computer Science, CU Proton Power

Roadmap

2nd Generation

Q2 2009

Q3 2009

Proton Power

Q1 2009

Cellulose to Liquid Fuels (CeLF)

- Biofuels from Thermal Process (Pyrolysis)
- Butanol Direct gasoline replacement (current price is \$6/gal in chemical markets)
- Process COGS of ~ \$1.50/gallon
- Methanol co-product

100

Coal to Liquid Fuels (CoLF)

- ChyP gas output and coal char input
- Liquid Fuels can be used directly or refined
- 45% of energy is from renewable source
- 57% system reduction in carbon emissions

Proton Power Summary

- High hydrogen output and syngas energy density
- Initial market focuses:
 - C&I customers for DG equipment (Trane)
 - merchant hydrogen supply (JV with Nexus Energy)
- Team with prior product development, mfg history
- Demonstrated technology, product ready for pilots
- Deep engagement with channel -Trane, Bass Electric, Nexus Energy (JV with Proton Power: H2Energy)

Large Vacuum Furnace

CVD Furnace

10/12/2010

CVD Furnace

Chemical Vapor Deposition

Large Controlled Atmosphere Furnace

High temperature, controlled atmosphere

Precision loader

Large Ceramic Furnace

10/12/2010

2800C Fuel Cell Carbon-Carbon

High Pressure, High Temperature

10/12/2010

CVD High Temperature

Engineering Staff

- Tennessee
- Sam C. Weaver-Ph.D.-Metallurgical Engineering-UT
- Jeff Hodgson-Ph.D.-Mechanical Engineering-UT
- Greg Shillings-B.S. Electrical Engineering-Tennessee Tech
- Dan Hensley-University of Tennessee
- Terrence Johnson-Fourth year Mechanical Engineering-UT
- Colorado
- Sam P. Weaver-B.S.-Engineering Physics-Caltech
- Lee Smith-B.S.-Mechanical Engineering-RPI
- Brian Nuel-M.S.-Mechanical Engineering-U.of Illinois
- Kevin McWilliams-M.S. Aerospace Engineering-U. of Colorado
- Dan Harrison-B.S. Engineering and Applied Science-Caltech
- Leslie Weise-B.S. Engineering, J.D. Law-University of Denver
- Nathanial Farber-B.S. Mechanical Engineering-U. of Colorado
- Rod Pullman-Mathematics/Computer Science-U. of Colorado

100 kWe-PPI vs. CPI

PPI 100 kWe

CPI 100 kWe

Competitive Landscape

Company	Fuel Type	Hydrogen Output	Gas Ene BTU / scf	Scale	Application
Proton Power Tennessee	cellulose	65%	230	500kW – 5MW	DG, CHP, IPP & H ₂
Energy Products	mill residues, ag. crops & wastes animal wastes municipal wastes	0%	180-200	CHP 16MW	DG. Mostly EPC and fluidized bed energy systems
Community Power	Wood chips Sawdust	20%	120-165	5-75kW	DG
Nexterra Energy	wood residue	~4-40%	117	1.38 MWe	СНР
Kopf		~4-40%	112		
Frontline BioEnergy	wood chips, saw dust, grain hulls, corn stalks, switchgrass, straw	4-40%	150-300		СНР
Chiptec	sawdust, ag waste, paper pellets, rail road ties	~4-40%	130 – 150	2 – 20 MW	СНР
Ankur Scientific		15%	130 - 150	100 – 500 KW	DG
Flex Energy	low BTU waste gases	~4-40%	150 - 300		
Carbona		~4-40%		1 – 10MW	CHP

Companies have touch lives

