Giant Reed As a Dedicated Biomass Crop

Panel Presentation Biomass R&D Initiative Technical Advisory Committee Meeting Arlington, VA April 1, 2010

David Bransby, Auburn University Moderator and first speaker Topic: Overview and Summary of research on Giant Reed at Auburn University

Peter Chanin, White Technology LLC Second speaker Topic: Status of Giant Reed relative to state and federal invasive species lists, and work being conducted by White Technology LLC

Peter Gillies, TreeFree Biomass Solutions Third speaker

Topic: Proper, regulated management of Giant Reed as a dedicated energy crop, and work being conducted by TreeFree Biomass Solutions

John Lydon, USDA ARS Fourth speaker Topic: Research by USDA ARS on biological control of Giant Reed in Texas

Panel Objectives

- Alert the Biomass R&D Initiative TAC on opportunities offered by Giant Reed as a dedicated biomass crop.
- Examine scientific evidence regarding claims of invasivity.
- Update the committee on efforts and progress being made in both the public and private sector to develop Giant Reed as a dedicated biomass crop.
- Update the committee on efforts by USDA on biological control of Giant Reed.
- Seek input from the committee on how to proceed with development and commercialization of Giant Reed as a dedicated biomass crop.

Overview of Giant Reed as a Dedicated Biomass Crop and Research at Auburn University

David Bransby, Auburn University

Issues to be addressed:

- Crop biology
- Current and future uses
- Advantages over other biomass crops
- Public and private entities working on Giant Reed as a biomass crop
- Research results from Auburn University
- Some observations of the concept of "invasivity"
- Research needs

Biology

- Native to India, but widely spread throughout the tropics, sub-tropics and Mediterranean regions of the world
- Sterile plant, produces no viable seed, but does produce flowers
- Needs to be established by vegetative propagation
- Produces large, but short rhizomes (underground stems, like bulbs)
- Does not spread like bamboo

Biology

- Requires well drained soils
- Adapted to a wide range of soils, including saline soils
- Capable of very high yields, with low inputs
- This probably facilitated by beneficial associations with microorganisms, especially endophytic and micorrhizal fungi
- Exceptional soil carbon sequestration in rhizomes
- Can be controlled with Roundup

Six-month old plants in Alabama planted with cane from California

Giant Reed

Mature cane in California

Giant Reed rhizome

Planting Giant Reed in fall

Cane starting to shoot

Multiple shoots

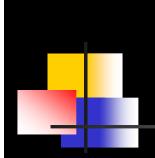
Young rhizomes developing

Mature cane in Alabama

Uses

Current:

- Musical instrument reeds
- **Future:**
- Pulp and paper
- Rayon
- Biopower and Biofuels
- Composite boards like particle board
- Industrial chemicals
- Pharmaceuticals


Harvesting cane for musical instrument reeds in California

Drying cane to make musical instrument reeds in California

Yields of over 50 tons/acre are reported in the literature, but

Advantages over other Biomass Crops

- Very high yields
- Low (No) inputs
- Exceptional soil carbon sequestration - 4X switchgrass
- Higher bulk density
- Multiple products
- Adaptation to saline soils and saline water

Public and Private Sector R&D

Public sector:

- Auburn University
- Washington State University
- University of Washington
- University of South Carolina
- State of Alabama (\$100,000 grant)
- USDA, ARS, Tifton, GA

Private sector:

- TreeFree Biomass Solutions
- White Technology LLC
- Biomass Investment Group
- Strong interest from paper companies like Boise and Weyerhauser

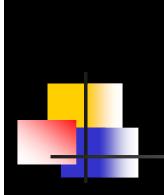
R&D in Other Countries

- Australia
- China
- Europe
 - Portugal
 - Spain
 - France
 - Italy
 - Greece

Research at Auburn University

Started in 1999

Included:

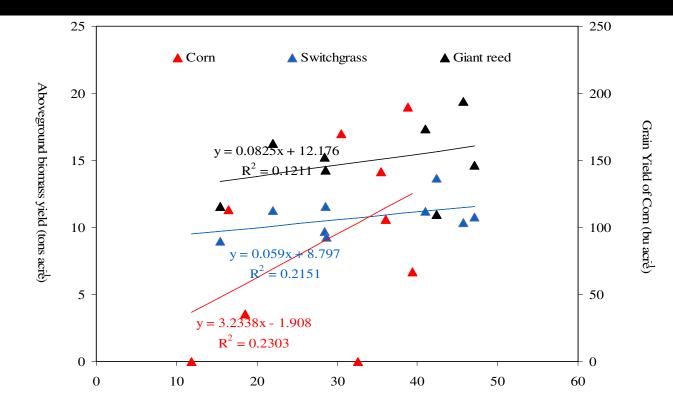

- Yield of Californian types vs. Alabama types vs switchgrass
- Cutting frequency
- Effects of rainfall on yield
- Observations re invasivity
- Soil carbon sequestration in rhizomes
- Initiation of commercial scale fields
- Some pulping work

Switchgrass in foreground (20 yr) Giant Reed in background (10 yr)

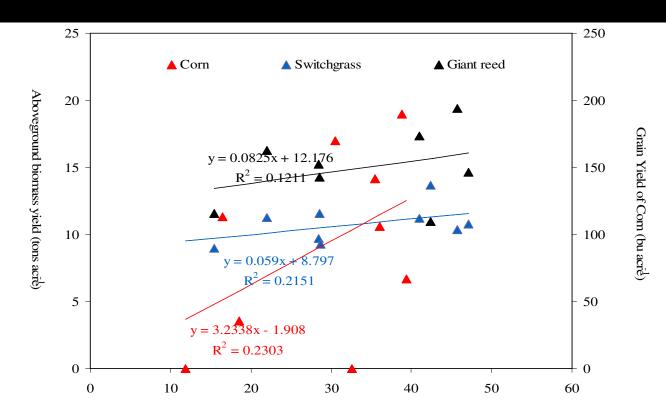
Switchgrass vs. Giant Reed Height

Cut once a year (left) Cut twice a year (right)

Cut once a year (right) Cut every 2 years (left)



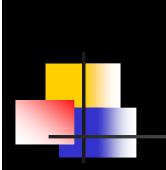
Cut once a year in summer (left) Cut every 2 years (right)


Giant Reed, Switchgrass and Corn yields against rainfall

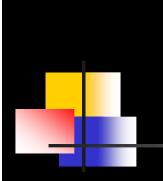
Growing Season Rainfall (inches)

Giant Reed, Switchgrass and Corn yields against rainfall

Growing Season Rainfall (inches)


NOTE: No Fertilizer for Giant Reed

Harvesting Rhizomes Fall, 2009


Harvesting Rhizomes Spring 2010

Half the Rhizomes from 1 sq meter 40 tons/acre – 4X switchgrass

Rhizomes from 1 sq meter 40 tons/acre – 4X switchgrass

40 tons/acre – 4X switchgrass Does not include roots

Huge carbon credits!

Bulk Density

Pounds per cubic foot
 Critically important for:

 hauling
 storage

- feeding into plant

White Technology acknowledged for funding this research

Bulk Density (lb/cu ft)

SwitchgrassMiscanthusGiant Reed2.492.246.53White Technology acknowledged for funding this researchImage: Comparison of the second second

Bulk Density (lb/cu ft)

6.53

Switchgrass 2.49

Miscanthus

2.24

White Technology acknowledged for funding this research

Observations re "Invasivity"

- Invasivity is an extremely poorly defined science – not really a science at all!
- Multiple definitions of an invasive plant – no standards
- Invasivity is site-dependent
- Almost any plant will be invasive in riparian areas (areas adjacent to streams and rivers that are prone to flooding)

Observations re "Invasivity"

- Giant Reed does not produce seed, so cannot be any more invasive than energy cane and miscanthus
- It has become invasive along the Rio Grande in Texas, and in riparian areas around LA, southern California
- If energy/sugar cane or miscanthus were planted in such locations, they would be just as invasive
- If grown away from riparian areas, many case studies show it is not invasive

A 30-acre field of 7-yr-old Giant Reed on a private farm in Alabama - no evidence of invasivity

TreeFree Biomass Solutions acknowledged for funding this research

A 16-acre field of 7-yr-old Giant Reed on the Alabama Dept. of Corrections' Farm - no evidence of invasivity

TreeFree Biomass Solutions acknowledged for funding this research

Research Needs

- Low cost propagation procedure
- Improved genetics
- Improve understanding of roles of endophyte and micorrhiza
- Harvesting technology
- Development of effective regulation and control metrics
- Further development of uses

Conclusions

 Giant Reed offers substantial opportunities and advantages over other candidate biomass crops

 If properly regulated, the crop poses virtually no threat of becoming invasive

