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Scattering amplitudes in 

planar N=4 Super-Yang-Mills 

• Planar (large Nc) N=4 SYM is a 4-dimensional 

analog of QCD, (potentially) solvable to all orders in 

l = g2Nc

• It can teach us what types of mathematical 

structures will enter multi-loop QCD amplitudes

• Its amplitudes have remarkable hidden symmetries

• In strong-coupling, large l limit, AdS/CFT duality 

maps the problem into weakly-coupled    

gravity/semi-classical strings moving on AdS5 x S5
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AdS/CFT in one picture
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Strong coupling and soap bubbles

• Use AdS/CFT to compute scattering amplitude 

• High energy scattering in string theory semi-classical:

2-d string world-sheet is stretched tightly;            

classical solution minimizes area           

Alday, Maldacena, 0705.0303

Gross, Mende (1987,1988)

Classical action imaginary 

 exponentially suppressed 

tunnelling configuration

Same “wire frame” also 

at weak coupling

(polygonal Wilson loop)
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Solving planar N=4 SYM scattering

• Exact exponentiation of 4 & 5 gluon amplitudes

• Dual (super)conformal invariance

• Amplitudes equivalent to Wilson loops

• “Soap bubbles” for strong coupling limit

Can these structures be used to solve exactly

in coupling for all planar N=4 SYM amplitudes?

What is the first nontrivial case to solve?



Integrands

• Using unitarity and other techniques, one can 

construct loop integrands for planar (or nonplanar) 

N=4 SYM amplitudes very efficiently without ever 

evaluating a single Feynman diagram.

• Planar 4-point amplitude especially simple.  

• 1, 2 and 3  loop integrands built out of:
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Even Sheldon Cooper can do it
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All planar N=4 SYM integrands

• All-loop BCFW recursion relation for integrand 

• Manifest Yangian invariance (huge group containing

dual conformal symmetry).

• Multi-loop integrands written

in terms of “momentum-twistors”.

• Still have to do integrals over

the loop momentum 

Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka, 1008.2958, 1012.6032



L. Dixon      Scattering in N=4 SYM Fermilab     Jan. 31, 2013 10

Do we actually need integrands?

In many cases, symmetries and other

constraints on the multi-loop planar 

N=4 SYM amplitude are so powerful

that we don’t even need to know the 

integrand at all!  
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Dual conformal invariance

Conformal symmetry acting in momentum space,

on dual or sector variables xi  :     ki =  xi - xi+1 

Broadhurst (1993); Lipatov (1999); Drummond, Henn, Smirnov, Sokatchev, hep-th/0607160

x5

x1

x2

x3

x4

k

invariance under inversion:
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Dual conformal constraints

• Because                                    there are no such variables for n = 4,5

• Amplitude fixed to BDS ansatz:   

• Symmetry fixes form of amplitude, up to functions

of dual conformally invariant cross ratios:

+ 2 cyclic perm’s
1

2

34

5

6

For n = 6, precisely 3 ratios:      

MHV  (--++++)
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Formula for R6
(2)(u1,u2,u3)

• First found analytically from Wilson loop integrals                       

Del Duca, Duhr, Smirnov, 0911.5332, 1003.1702

17 pages of “Goncharov polylogarithms”

• Simplified to a few classical polylogarithms using symbology

Goncharov, Spradlin, Vergu, Volovich, 1006.5703
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Wilson loop OPEs

• Remarkably,                             can be recovered directly

from analytic properties, using “near collinear limits”

• Wilson-loop equivalence  this limit is controlled by 

an operator product expansion (OPE)

• Now we can go (most of the way) to 3 and 4 loops,  

by combining the OPE expansion with symbology

Alday, Gaiotto, Maldacena, Sever, Vieira, 1006.2788; GMSV, 1010.5009, 1102.0062
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• Multi-loop integrals generate complicated 

transcendental functions, iterated integrals,

generalizations of the ordinary polylogarithm:

• Symbol S [ f ] of function f remembers “important” 

properties of f: derivatives and locations of branch cuts. 

It forgets other properties, like precise integration 

contours and numerical values; reconstruct them later.

• Trivializes complicated polylogarithmic identities.

Symbology?



L. Dixon      Scattering in N=4 SYM Fermilab     Jan. 31, 2013 16

• A pure function  f (k) of transcendental degree k is a 

linear combination of k-fold iterated integrals, with 

constant (rational) coefficients.

• Can also add terms like

• Derivatives of  f (k) can be written as

for a finite set of algebraic functions fr

• Define the symbol S [Goncharov, 0908.2238] recursively in k:

Iterated differentiation
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Polylog examples
• By definition,

• Symbols of products are mergings of symbols of factors:

• If derivative is known, symbol is known:
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Polylog identities at symbol level

• A well-known identity:

• Take symbol of it:

• Biggest virtue of symbol: Transforms all identities 

between multi-variable transcendental functions into 

simple algebraic identities
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Elementary symbol properties

• Factorization:

• Integrability:  

Not every (multi-variable) symbol is a function

but no function has symbol

• Integrability test [Goncharov; GMSV, 1102.0062] :

for symbols of functions
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Symbol entries for R6
(L)(u1,u2,u3)

• Based on R6
(2), we assume entries can all be drawn 

from this set:

with

+    perms

yi depend on ui via square roots
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S[ R6
(2)(u,v,w) ] in these variables

GSVV, 1006.5703
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First entry

• Always drawn from                               GMSV, 1102.0062

because first entry controls branch-cut location

• Only massless particles 

 all cuts start at origin in 

 Branch cuts all start from 0 or ∞  in 
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Final entry

• Always drawn from 

• Restriction characteristic of many Feynman integrals

Arkani-Hamed et al., 1108.2958; Drummond, Henn, Trnka 1010.3679; 

LD, Drummond, Henn, 1104.2787, V. Del Duca et al., 1105.2011

• Same condition also found via dual superconformal

anomaly equation for supersymmetric Wilson loops         
Caron-Huot, 1105.5606; Caron-Huot, He, 1112.1060
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Ansatz for S[ R6
(3)(u,v,w) ]

parameters before imposing any constraints
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Generic Constraints 

• Integrability (immediately forbids                   from

second entry) 

• S3 permutation symmetry in

• Even under “parity”:

every term must have an even

number of         – 0, 2 or 4 

• Vanishing in collinear limit

followed by 

• These 4 constraints reduce 118,098

 35 free parameters
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OPE Constraint 

• R6
(L)(u,v,w) vanishes in the collinear limit, 

v = 1/cosh2t 0                       t ∞

In the near-collinear limit, its behavior is described by 

an Operator Product Expansion, with generic form

t ∞

Alday, Gaiotto, Maldacena, Sever, Vieira, 1006.2788; GMSV, 1010.5009; 1102.0062

f

s
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OPE Constraint (cont.) 
• As t ∞ ,    v = 1/cosh2t    t L-1  ~   [ln v] L-1

• Leading t L-1 dependence of R6
(L)

needs only one-loop anomalous dimension En
(1)  ~ gm(p)

• Extract from symbol: only terms with L-1 leading v entries

where
Basso 

1010.5237
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OPE constraint on symbol

• still complicated.  Simplify by acting with 2 

different differential operators (easily applied to symbol):

1)

annihilators of conformal blocks are [GMSV, 1102.0062]:

2)
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Solution to Constraints 

• OPE constraints mutually consistent, reduce symbol 

ansatz to just 2 parameters:

• Later Caron-Huot, He [1112.1060] found
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Reconstructing functions 

• is only made from

and is so simple we can integrate it in terms of 

[harmonic] polylogarithms of a single variable:
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Reconstructing functions (cont.) 

• Terms in              can contain        in the form

with

• is not classical polylog, but a 1-d integral over them

• Terms in              can have up to four

X can be broken up into functions which are at worst  

2-d integrals over classical polylogs (in progress).
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The multi-Regge limit

• To simplify the problem enough to go to very high loop 

order, we take the limit of multi-Regge kinematics 

(MRK): large rapidity separations between the 4 final-

state gluons:

• Properties of planar N=4 SYM amplitude in this limit 

studied extensively already:
Bartels, Lipatov, Sabio Vera, 0802.2065, 0807.0894; Lipatov, 1008.1015; 

Lipatov, Prygarin, 1008.1016, 1011.2673; 

Bartels, Lipatov, Prygarin, 1012.3178, 1104.4709; 

LD, Drummond, Henn, 1108.4461;  Fadin, Lipatov, 1111.0782
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Multi-Regge kinematics

1 2

3

45

6

A very nice change of variables

[LP, 1011.2673]  is to             :

2 symmetries:  conjugation

and inversion
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Physical 24 multi-Regge limit

• To get a nonzero result, for the physical region, one must 

first let                         ,  and extract one or two 

discontinuities       factors of              .   

• Then let   u1 1.            Bartels, Lipatov, Sabio Vera, 0802.2065, …

imaginary part, from

single discontinuity

real part, from

double discontinuity
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Simpler pure functions

weight    2L-n-1                  2L-n-2   

• Single-valued in   (w,w*)  =  (-z,-z)    plane

Precise class of functions defined by Brown:

F.C.S. Brown, C. R. Acad. Sci. Paris, Ser. I 338 (2004)

H = ordinary harmonic polylogarithms
Remiddi, Vermaseren, hep-ph/9905237

SVHPLs:

_
Symbol entries 
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Harmonic Polylogarithms (HPLs)

w  =  word formed from noncommuting letters  x0, x1

Remiddi, Vermaseren, hep-ph/9905237

Shorthand example:

Special cases:

Shuffle identity:
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Brown construction of SVHPLs

Main formula:

Special cases:

Shuffle identity:

f  renames y to xword reversal operator  “  ~  “



The y alphabet

• Related to the x alphabet using the Drinfel’d associator:

and definitions



Example:  
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Z2 x Z2 symmetry

• z z

• z 1/z
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_

reducible to products 

of lower weight

reducible to products 

of lower weight

Keep the irreducible one



MRK Master Formula:
factorization in moment space
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Fadin, Lipatov, 1111.0782

BFKL eigenvalue MHV impact factor

LL NLL NNLL NNNLL

Formula may get corrections beyond NLL



Evaluating the master formula

• Every                     and

is a linear combination of a finite basis of SVHPLs.

• Evaluate n integral by residues 

 master formula leads to double sum.  

• Truncating double sum  truncating power 

series in (w,w*) = (-z,-z ) around origin.

• Match the two series to determine the 

coefficients in the linear combination.

• LL and NLL w and F known      Fadin, Lipatov 1111.0782
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_



MHV LLA  gL-1
(L)   through 5 loops
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MHV LLA  gL-1
(L)   through 10 loops
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MHV NLLA  gL-2
(L) through 9 loops

L. Dixon      Scattering in N=4 SYM Fermilab     Jan. 31, 2013 44



LLA to all orders
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Pennington, 1209.5357

Matches series

expansion through

L = 14.   All orders proof?



NkDLLA limit to all orders
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Pennington, 1209.5357

Answer a linear combination of modified Bessel functions Ij

r0(x) matches known DLLA result
Bartels, Lipatov, Prygarin, 1104.4709

Collinear-Regge limit as |w|  0



NkDLLA limit to all orders
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Pennington, 1209.5357

Should try to match to strong coupling results
Bartels, Kotanski, Schomerus, 1009.3938 



Beyond NLL
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L

n

1 2 3 4 5

LL NLL

NNLL NNNLL

1

2

3

4

NLL

LL

LL

LL

NLL

LL

LL

NLL

NLL

NLL

NNLL

Lipatov

Prygarin

LD,

Drummond,

Henn

(modulo some “beyond-the-symbol” constants starting at NNLL)

LD, Duhr, Pennington



BFKL beyond NLL

• Using OPE and other constraints, determine the 4-loop 

remainder function in MRK, up to some unfixed constants.  

In particular, we get

• Assuming the master formula (single-Reggeon exchange), 

we use this information to compute the NNLL   E(2)
n,n

and the NNNLL  F(3)
n,n

– after making a dictionary for the Fourier-Mellin transform 

(n,n)  (w,w*)

• Only a limited set of (n,n) functions enter E, F: 

polygamma functions y(k)(x)  +  rational
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Building blocks
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NNLL BFKL eigenvalue
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1 symbol level

ambiguity in g1
(4)

8 beyond symbol level

ambiguities in g1
(4)
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Conclusions

• Planar N=4 SYM is a powerful laboratory for studying  
4-d scattering amplitudes, thanks to dual 
(super)conformal invariance & other properties.

• 6-gluon amplitude is first nontrivial case.  Symbol now 
known through 4 loops (modulo some constants).

• Multi-Regge limit offers even simpler setup to solve 
first, greatly facilitated by Brown’s SVHPLs.

• (NMHV amplitudes in this limit also naturally described 
by same functions.)

• Multi-Regge limit of 6-gluon amplitude can be solved to 
all orders in LLA, especially in collinear corner (|w| 0).

• Bessel functions suggest integrability, localization.

• May be that full multi-Regge limit (i.e. NkLLA terms) is 
next to be solved to all orders in the coupling?



Extra Slides
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LLA Numerics for fixed |w|
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Would be interesting to compare with numerical approach of 

Chachamis, Sabio Vera, 1112.4162, 1206.3140



y alphabet and z derivatives
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_

but
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• Modification of BDS ansatz for n = 6 was suspected, 
based on:

• A large n, strong-coupling limit       Alday, Maldacena, 0710.1060 

• A 2-loop Wilson-loop calculation 
Drummond, Henn, Korchemsky, Sokatchev, 0712.4138

• A high-energy/Regge limit
Bartels, Lipatov, Sabio Vera, 0802.2065

• Confirmed by a direct amplitude calculation                    
Bern, LD, Kosower, Roiban, Spradlin, Vergu, Volovich, 0803.1465

that matched the Wilson loop numerically

Drummond, Henn, Korchemsky, Sokatchev, 0803.1466

Need for R6
(2)(u1,u2,u3)
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OPE Constraints (cont.) 
• Using conformal invariance, send one long line to ∞, 

put other one along x-

• Dilatations, boosts, azimuthal rotations preserve this 

configuration.  

• s,f parametrize isometries, so classify conformal 

primaries by conjugate variables (twist p, spin m)

• Also expand anomalous dimensions in coupling g2:

• Leading t L-1 dependence of R6
(L)

needs only one-loop anomalous dimension 



L. Dixon      Scattering in N=4 SYM Fermilab     Jan. 31, 2013 58

Professor of symbology at Harvard University, has used

these techniques to make a series of important advances: 


