Excited states and hadron resonances from Lattice QCD

Daniel Mohler

Fermilab Theory Group Batavia, IL, USA

Batavia, January 24 2013

‡ Fermilab

Collaborators: G. Engel, C. B. Lang, L. Lescovec, S. Prelovsek, R. M. Woloshyn

Outline

Introduction & Motivation

- 2 Extraction of excited energy levels
 - Why are excited states difficult?
 - Example results for light-quark mesons and baryons
 - Example results for the low-lying charmonium spectrum

From excited states to hadron resonances

- The ρ resonance a benchmark calculation
- *K*π scattering
- $D\pi$ and $D^*\pi$ scattering

Summary & Outlook

Recent developments

Light mesons and baryons

Ground states have been calculated with full control of systematic uncertainties Example from Dürr et al. Science 322 (2008)

• Calculations at the physical pion mass PACS-CS Phys.Rev. D81 (2010) 074503 BMW Phys.Lett. B701 (2011) 265 MILC arXiv:1212.4768 We will soon see more (RBC,...)

• First dynamical 2+1+1 flavor simulations (ETMC, MILC)

< 🗇 > < 🖻 > < 🖻

Recent developments

Light mesons and baryons

Ground states have been calculated with full control of systematic uncertainties Example from Dürr et al. Science 322 (2008)

Calculations at the physical pion mass

PACS-CS Phys.Rev. D81 (2010) 074503 BMW Phys.Lett. B701 (2011) 265 MILC arXiv:1212.4768 We will soon see more (RBC,...)

First dynamical 2+1+1 flavor simulations (ETMC, MILC)

Recent developments

Light mesons and baryons

Ground states have been calculated with full control of systematic uncertainties Example from Dürr et al. Science 322 (2008)

Calculations at the physical pion mass

PACS-CS Phys.Rev. D81 (2010) 074503 BMW Phys.Lett. B701 (2011) 265 MILC arXiv:1212.4768 We will soon see more (RBC,...)

First dynamical 2+1+1 flavor simulations (ETMC, MILC)

- Much progress in controlling systematics for ground states in "gold-plated" channels
 - \rightarrow Studies with fully controlled systematics at the physical point.
- (2) Qualitative studies provide/implement crucial insights/improvements and pave the way
 - I will present results from exploratory studies so take results with a grain of salt and beware of the dangerous animals of lattice QCD
 - I will focus on spectroscopy but many of the used methods are general.

Two kinds of progress ...

- (1) Much progress in controlling systematics for ground states in "gold-plated" channels
 - \rightarrow Studies with fully controlled systematics at the physical point.
- (2) Qualitative studies provide/implement crucial insights/improvements and pave the way
 - I will present results from exploratory studies so take results with a grain of salt and beware of the dangerous animals of lattice QCD

 I will focus on spectroscopy but many of the used methods are general.

Daniel Mohler (Fermilab)

Example of systematics: Extrapolations

- Continuum limit: $a(g,m) \rightarrow 0$
 - Need simulations at multiple different lattice spacings
- Thermodynamic limit: $L \rightarrow \infty$ $(L \cdot a = const.)$
 - Hadron physics in a small box \rightarrow finite volume effects Typical volume $\approx 2.0 \dots 3.5 {\rm fm}$
- Calculation at physical quark masses or extrapolation to the *Chiral limit*: $m \rightarrow m_0$ ($M_{\pi} \rightarrow M_{\pi,exp}$)
 - Physical u, d quark masses small \rightarrow Simulation very expensive!
 - Chiral Perturbation Theory (χ PT) \leftrightarrow Lattice QCD

ヘロト ヘ回ト ヘヨト ヘヨト

Renewed interest in hadron spectroscopy (in experiment and theory)

- X, Y and Z Charmonium-like states
- light scalar mesons
- D_s spectrum: $D_{s0}^*(2317)$ (0⁺), $D_{s1}(2460)$
- Highly excited light-quark mesons and baryons

In addition puzzling lattice data for

- Roper resonance
- Λ baryons, especially Λ(1405)

Methods used for excited state spectroscopy interesting with regard to

- Radiative decays
- CP violation in charm
- Puzzles observed in semileptonic B decays

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example operators

Need: *Interpolating field operator* that creates states with correct quantum numbers.

• Example I: Pseudoscalar Mesons with $IJ^{PC} = 10^{-+}$

$$egin{aligned} &O_{\pi}^{(1)}=ar{u}\gamma_{5}d\ &O_{\pi}^{(2)}=ar{u}\overleftrightarrow{D}\gamma_{i}\gamma_{t}\gamma_{5}d \end{aligned}$$

• Example II: Nucleon

$$O_N = \epsilon_{abc} \, \Gamma_1 \, u_a \left(u_b^T \, \Gamma_2 \, d_c - d_b^T \, \Gamma_2 \, u_c \right)$$

In practice: Many (slightly different) constructions possible!In a QFT they should all be OK; Overlap?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example operators

Need: *Interpolating field operator* that creates states with correct quantum numbers.

• Example I: Pseudoscalar Mesons with $IJ^{PC} = 10^{-+}$

$$egin{aligned} \mathcal{O}^{(1)}_{\pi} &= ar{u}\gamma_5 d \ \mathcal{O}^{(2)}_{\pi} &= ar{u}\overleftrightarrow{D}\gamma_i\gamma_t\gamma_5 d \end{aligned}$$

Example II: Nucleon

$$O_{N} = \epsilon_{abc} \, \Gamma_{1} \, u_{a} \left(u_{b}^{T} \, \Gamma_{2} \, d_{c} - d_{b}^{T} \, \Gamma_{2} \, u_{c} \right)$$

- In practice: Many (slightly different) constructions possible!
- In a QFT they should all be OK; Overlap?

Daniel Mohler (Fermilab)

4 D K 4 B K 4 B K 4 B K

The problem with excited states

From the analysis of Euclidean correlators:

$$\left\langle \hat{O}_2(t)\hat{O}_1(0) \right\rangle_T \propto \sum_n e^{-t\boldsymbol{E}_n} < 0|\hat{O}_2|n> < n|\hat{O}_1|0>$$

- The whole tower of states contributes
- Ground state is dominant at large t
- Exited states appear as sub-leading exponentials
- Noisy background from limited statistics
- For a single correlator, fit to several exponentials leads to poor results
 - \rightarrow Advanced methods needed for excited states!

Daniel Mohler (Fermilab
-----------------	----------

Hadron resonances from Lattice QCD

Ea

E₀

(My) Method of choice: The variational method

Matrix of correlators projected to fixed momentum (will assume 0)

$$C(t)_{ij} = \sum_{n} \mathrm{e}^{-tE_{n}} \left< 0 |O_{i}| n \right> \left< n |O_{j}^{\dagger}| 0 \right>$$

Solve the generalized eigenvalue problem:

$$\begin{split} \mathcal{C}(t)\vec{\psi}^{(k)} &= \lambda^{(k)}(t)\mathcal{C}(t_0)\vec{\psi}^{(k)} \\ \lambda^{(k)}(t) \propto \mathrm{e}^{-t\mathcal{E}_k}\left(1 + \mathcal{O}\left(\mathrm{e}^{-t\Delta\mathcal{E}_k}\right)\right) \end{split}$$

At large time separation: only a single state in each eigenvalue. Eigenvectors can serve as a fingerprint.

Michael Nucl. Phys. B259, 58 (1985) Lüscher and Wolff Nucl. Phys. B339, 222 (1990) Blossier et al. JHEP 04, 094 (2009)

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ ·

Angular momentum (mesons)

 Reminder: No unique spin assignment on the lattice. Five irreducible representations:

Irrep of O	J	Spinors in irrep
<i>A</i> ₁	0,4,	1, γ_t , γ_5 , $\gamma_t\gamma_5$
A ₂	3,6,	
E	2,4,5,	
<i>T</i> ₁	1,3,4,5,	$\gamma_i, \gamma_t \gamma_i, \gamma_5 \gamma_i, \gamma_t \gamma_5 \gamma_i$
<i>T</i> ₂	2,3,4,5,	

- Classification of interpolator basis by representations
- Unique identification of spin nontrivial

Dudek et al., PRL 103 262001 (2009)

Daniel Mohler (Fermilab)

4 D b 4 A b

Light mesons and baryons with CI fermions

- Simulation with 2 mass degenerate dynamic quarks and a heavier (strange) valence quark
- Pion masses ranging from 588MeV to 255MeV
- Scale set by the static quark potential and strange quark mass set by $\boldsymbol{\Omega}$ baryon
- Errors are statistical only and systematic errors are non-negligible

set	β_{LW}	m_0	configs.	m_{π} [MeV]	$L^3 imes T \left[a^4 ight]$	$m_{\pi}L$	<i>a</i> [fm]
A50	4.70	-0.050	200	596(5)	$16^3 imes 32$	6.40	0.1324(11)
A66	4.70	-0.066	200	255(7)	$16^3 imes 32$	2.72	0.1324(11)
B60	4.65	-0.060	300	516(6)	$16^3 imes 32$	5.72	0.1366(15)
B70	4.65	-0.070	200	305(6)	$16^3 imes 32$	3.38	0.1366(15)
C64	4.58	-0.064	200	588(6)	$16^3 imes 32$	6.67	0.1398(14)
C72	4.58	-0.072	200	451(5)	$16^3 imes 32$	5.11	0.1398(14)
C77	4.58	-0.077	300	330(5)	$16^3 imes 32$	3.74	0.1398(14)
LA66	4.70	-0.066	-0.012	97	$24^3 imes 48$	4.08	0.1324(11)
SC77	4.58	-0.077	-0.022	600	$12^3 imes 24$	2.81	0.1398(14)
LC77	4.58	-0.077	-0.022	153	$24^3 \times 48$	5.61	0.1398(14)

Light mesons and baryons from two flavor QCD

Engel et al. PRD 85 034508 (2012); Engel et al. arXiv:1301.4318;

Errors are statistical only after chiral extrapolation

Daniel Mohler (Fermilab)

Hadron resonances from Lattice QCD

Batavia, January 24 2013

12/30

Low lying positive parity: infinite volume extrapolated

 Remaining shortcomings: 2 flavor, badly determined strange quark mass, no continuum extrapolation, ...

Daniel Mohler (Fermilab)

Batavia, January 24 2013 13 / 30

Charmonium spectrum: Charm quark treatment

• We use the Fermilab method for the heavy (charm) quark

El-Khadra et al., PRD 55, 3933

- We tune κ for the spin averaged kinetic mass $(M_{\eta_c} + 3M_{J/\Psi})/4$ to assume its physical value
- General form for the dispersion relation

Bernard et al. PRD83:034503,2011

$$E(p) = M_1 + \frac{p^2}{2M_2} - \frac{a^3W_4}{6}\sum_i p_i^4 - \frac{(p^2)^2}{8M_4^3} + \dots$$

- We compare results from three different fit strategies:
 - 1 Neglect the term with coefficient W_4
 - 2 Fit $E^2(p)$ and neglect $(p^2)^2$ term from mismatch of M_1 , M_2 and M_4

$$E^{2}(p) \approx M_{1}^{2} + \frac{M_{1}}{M_{2}}p^{2} - \frac{M_{1}a^{3}W_{4}}{3}\sum_{i}(p_{i})^{4}$$
 (1)

3 Set either $M_4 = M_1$ or $M_4 = M_2$

14/30

Charmonium spectrum using the distillation technique

D. M., S. Prelovsek, R. M. Woloshyn, to appear in PRD;

- For some technical detail see a later slide
- Data from 1 ensemble; Errors statistical + scale setting

Daniel Mohler (Fermilab)

Excited states - some key observations

In practical calculations q q interpolators couple very weakly to multi-hadron states

McNeile & Michael, Phys. Lett. B 556, 177 (2003); Engel et al. PRD 82, 034505 (2010); Bulava et al. PRD 82, 014507(2010); Dudek et al. PRD 82, 034508(2010);

This is not unlike observations in string breaking studies

Pennanen & Michael hep-lat/0001015;Bernard et al. PRD 64 074509 2001;

This necessitates the inclusion of hadron-hadron interpolators

 We know: Energy levels ≠ resonance masses Naïve expectation: Correct up to O(Γ_R(m_π))

16/30

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Hadron resonances - experiment

Most hadrons are resonances under the strong interaction

hadron	Г [MeV]	hadron	Г [MeV]	hadron	Г [MeV]
<i>b</i> ₁ (1235)	142 ± 9	K*(1410)	232 ± 31	$D_0^{\star}(2400)$	267 ± 40
<i>a</i> ₁ (1260)	250 - 600	<i>K</i> ₀ *(1430)	270 ± 80	$D_1(2430)$	$384\pm^{130}_{110}$

Widths and branching fractions often known poorly

- Experiment data is analyzed with a partial wave analysis
- Elastic scattering: Scattering amplitudes T_l and related phases δ_l :

$$T_l = \sin \delta_l e^{i\delta_l} = \frac{e^{2i\delta_l} - 1}{2i}$$

Near a single relativistic Breit-Wigner shaped resonance

$$T_I = rac{-\sqrt{s}\Gamma(s)}{s-s_R+i\sqrt{s}\Gamma(s)}$$

with resonance position $s_R=m_R^2$ and decay width Γ

17/30

The Lüscher method for elastic scattering

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.

- (1) Extract energy levels $E_n(L)$ in a finite box
- (2) The Lüscher formula relates this spectrum to the phase shift of the continuum scattering amplitude
- (3) Extract resonance parameters with some degree of modeling/approximation

Energy levels in a box - an illustration

animations by C. B. Lang and DM

A .

- Left: Expectations for ρ -like resonance at varying coupling $g_{\rho\pi\pi}$
- **Right:** Expectations for ρ -like resonance with physical $g_{\rho\pi\pi}$ and varying mass

Daniel Mohler (Fermilab)

Batavia, January 24 2013 19 / 30

Multiple possibilities

- Lüscher method
 - Rest-frame calculation in multiple spatial volumes L³

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991) 531; Nucl. Phys. B 364 (1991) 237.

• Moving frames for equal mass hadrons $m_{h1} = m_{h2}$

Rummukainen, Gottlieb, Nucl. Phys. B 450, 397 (1995); Kim, Sachrajda, Sharpe, Nucl. Phys. B 727, 218 (2005); Feng, Jansen, Renner, PoS LAT2010 104 (2010); Dudek, Edwards, Thomas, arXiv:1203.6041.

• Moving frames for $m_{h1} \neq m_{h2}$: Even and odd *I* mix

Fu, PRD 85 014506 (2012); Döring et al. arXiv:1205.4838; Göckeler et al. arXiv:1206.4141; Leskovec, Prelovsek, PRD 85 114507 (2012);

- Calculations in multiple asymmetric boxes i.e. $L^2 \times L_z$
- Alternative approaches
 - Histogram method

Bernard, Lage, Meißner, Rusetsky, JHEP 0808 (2008) 024

Correlator method

Meißner, Polejaeva, Rusetsky, Nucl. Phys. B 846,1 (2011)

• N_f = 2 flavors of nHYP smeared Wilson-clover quarks

$N_L^3 imes N_T$	κ_l	β	<i>a</i> [fi	m]	<i>L</i> [fm]	#configs		m_{π} [MeV]		eV] <i>m</i>	_K [MeV]
$16^{3} \times 32$	0.1283	7.1	0.123	9(13)	1.98	28	30/279	26	6(3)	(3) 5	52(2)(6)
Ga	auge ens	semble	from	Haser	nfratz	et	al.	PRD	78	05451	1 (2008)
				Haser	nfratz	et	al.	PRD	78	01451	5 (2008)

- Basis of several $\bar{q}q$ and meson-meson interpolators
- Three separate studies
 - Coupled channel analysis of the ρ meson decay

Lang, DM, Prelovsek, Vidmar, PRD 84 054503 (2011)

• $K\pi$ scattering for isospin $\frac{1}{2}$ and $\frac{3}{2}$ in s-wave and p-wave

Lang, Leskovec, DM, Prelovsek, PRD 86 054508 (2012)

• *D* mesons including $D\pi$ and $D^{\star}\pi$ with relativistic charm quarks

DM, Prelovsek, Woloshyn - accepted by PRD

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Peardon et al. PRD 80, 054506 (2009) Morningstar et al. PRD 83, 114505 (2011)

 Idea: Construct separable quark smearing operator using low modes of the 3D lattice Laplacian Spectral decomposition for an N × N matrix:

$$f(A) = \sum_{k=1}^{N} f(\lambda^{(k)}) v^{(k)} v^{(k)\dagger}.$$
 (2)

With $f(\nabla^2) = \Theta(\sigma_s^2 + \nabla^2)$ (Laplacian-Heavyside (LapH) smearing):

$$q_{s} \equiv \sum_{k=1}^{N} \Theta(\sigma_{s}^{2} + \lambda^{(k)}) v^{(k)} v^{(k)\dagger} q = \sum_{k=1}^{N_{v}} v^{(k)} v^{(k)\dagger} q.$$
(3)

- Advantages: momentum projection at source; large basis possible
- Disadvantages: expensive; unfavorable volume scaling
- Stochastic approach (mostly) eliminates bad scaling

Daniel Mohler (Fermilab)

The ρ resonance - a benchmark calculation

From Lang, DM, Prelovsek, Vidmar, PRD 84 054503 (2011)

• We extract $g_{\rho\pi\pi}$ rather than Γ

$${\Gamma}(s)=rac{{{p^{\star 3}}}}{s}rac{g_{
ho\pi\pi\pi}^2}{6\pi}$$

• Results for $m_{\pi} = 266(3)(3)$ MeV

$$g_{
ho\pi\pi} = 5.13(20)$$
 $m_{
ho} = 792(7)(8) \, {
m MeV}$

The ρ resonance - comparing results

• To compare the masses I use the values for $\frac{r_0}{a}$ for each ensemble

Simulations differ in several respects - time will tell

24/30

• • • • • • • • • • • • •

$K\pi$ scattering for isospin $\frac{1}{2}$ and $\frac{3}{2}$ - scattering length

Lang, Leskovec, DM, Prelovsek, PRD 86 054508 (2012)

•
$$\frac{a_0'}{\mu_{K\pi}}$$
 independent of $m_{K,\pi}$ in LOChPT

25/30

$K\pi$ scattering for isospin $\frac{1}{2}$ and $\frac{3}{2}$ - phase shift data

Daniel Mohler (Fermilab)

Batavia, January 24 2013 26 / 30

(2012)

$D\pi$ and $D^{\star}\pi$ scattering

DM, Prelovsek, Woloshyn - accepted by PRD

• In the $J^P = 0^+ D_0^*$ channel we extract three levels

• For the $J^P = 1^+$ channel there are two resonances $D_1(2420)$ and $D_1(2430)$

Daniel Mohler (Fermilab)

$D\pi$ and $D^{\star}\pi$ scattering

DM, Prelovsek, Woloshyn - accepted by PRD

 Motivated by the heavy quark limit, We assume one state is given by the naive energy level and fit the remaining data to obtain

э

Comparing results with and without explicit scattering states

 D meson spectrum in the D^{*}₀ channel Negative parity Nucleon
 spectrum

• Similar observation also by Dudek, Edwards, Thomas, arXiv 1212 0830 @

Daniel Mohler (Fermilab)

Hadron resonances from Lattice QCD

- Studying (some) QCD resonances from first principles in fully dynamic simulations is becoming possible
- It seems necessary to include explicit multi-particle states to get good overlap and to disentangle these contributions
- Overall, studies of QCD resonances are still in their infancy
 → So far: Exploratory studies in small volumes
- The standard Lüscher method is restricted to the elastic case
- Extensions are not well developed or require modeling, although some progress has been made
- Looking at experiment, some interesting states can be studied but even low lying states can be quite difficult
 - \rightarrow There is much work ahead!

30/30

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >